AUSTRALIA

AUSTRALIAN CRITICAL MINERALS PROSPECTUS 2020

Australian Government

Australian Trade and Investment Commission

Geoscience Australia

Department of Industry, Science, Energy and Resources

Disclaimer

This report has been prepared by the Commonwealth of Australia represented by the Australian Trade and Investment Commission (Austrade), Geoscience Australia and the Department of Industry, Science, Energy and Resources. The report is a general overview and is not intended to provide exhaustive coverage of the topic. The information is made available on the understanding that the Commonwealth of Australia is not providing professional advice.

While care has been taken to ensure the information in this report is accurate, the Commonwealth does not accept any liability for any loss arising from reliance on the information, or from any error or omission, in the report. Any person relying on this information does so at their own risk. The Commonwealth recommends the person exercise their own skill and care, including obtaining professional advice, in relation to their use of the information for their purposes.

The Commonwealth does not endorse any company or activity referred to in the report, and does not accept responsibility for any losses suffered in connection with any company or its activities.

Unless otherwise specified, all amounts in this report are in Australian dollars.

Copyright © Commonwealth of Australia 2020

The material in this document is licensed under a Creative Commons Attribution – 4.0 International licence, with the exception of:

- the Commonwealth Coat of Arms
- the Australian Trade and Investment Commission's logo
- any third party material
- any material protected by a trade mark
- any images and photographs.

More information on this CC BY licence is set out at the creative commons website:

https://creativecommons.org/licenses/by/4.0/legalcode.

Enquiries about this licence and any use of this document can be sent to: Marketing-Comms-Helpline@austrade.gov.au.

Attribution

Before reusing any part of this document, including reproduction, public display, public performance, distribution, dissemination, communication, or importation, you must comply with the Attribution requirements under the CC BY licence.

Using the Commonwealth Coat of Arms

The terms of use for the Coat of Arms are available from the It's an Honour website (itsanhonour.gov.au).

18-19-382 (1). October 2020.

CONTENTS

Introduction	3
Australian Critical Minerals Prospectus 2020	4
Prospectus overview	4
Critical minerals and Australia	6
Rare-earth elements and current suppliers	7
Australia's competitive position	9
Australian agencies that support the critical minerals sector	11
Critical mineral summaries	14
Characteristics, supply, demand and criticality	
Advanced key projects	40
Project selection	41
Project status	41
Project ranking	42
Appendix A	168

Acknowledgments

Austrade would like to thank Geoscience Australia, the Critical Minerals Facilitation Office, Australia's state and territory geological agencies, Wide Range Consulting, and the companies profiled in this report for their respective inputs and efforts in bringing this prospectus together.

INTRODUCTION

Critical Minerals

Critical minerals are essential to the economic development of industrialised countries. These minerals have a range of high-tech applications across a variety of sectors of growing economic and strategic significance, including:

- renewable energy
- aerospace
- defence technologies
- automotive (particularly electric vehicles)
- telecommunications
- agri-tech.

Forecast demand growth for critical minerals presents an important economic opportunity. Australia is an important global supplier of many critical minerals and has the resource potential to scale up to meet rising global demand and drive the upstream diversification of global supply chains.

The Prospectus

This second edition of the Australian Critical Minerals Prospectus showcases Australia's significant capability in critical minerals. The Prospectus provides technical details on Australian critical minerals projects — both operating and at an advanced stage of development — where Australia has the potential to make a significant contribution to the global upstream supply chain.

The Prospectus also identifies Australia's broader geological potential in critical minerals, supported by maps and other relevant geological data. The Prospectus only presents Australia's national resource potential: it does not cover minerals processing, nor does it includes overseas resources in which Australian companies may have a development or investment interest.

Why Australia?

Australia is among the most-technically advanced, innovative and efficient global mining jurisdictions, with a long history of successful project development. Australia's world-class resource base is supported by its leadership in mining equipment and technology services, skilled labour, infrastructure, legal and regulatory frameworks, and attractive investment settings. With a large mining industry and robust regulation, Australia has also developed world leading environmental management practices that underpin sustainability and corporate responsibility. This depth of experience and expertise has shaped Australia's competitive advantages as a global supplier of choice for key, ethically-sourced critical minerals.

Australia's critical minerals capability is complemented by the Australian Government's focus on building a supportive policy environment. Recognising Australia's critical minerals potential, the Australian Government has recently implemented a range of practical policy measures. These include:

- Publishing Australia's Critical Minerals Strategy (2019)
- Establishment of a Critical Minerals Facilitation Office to lead and co-ordinate a national approach
- Supporting Export Finance Australia funding of critical minerals projects through the Defence Export Facility
- A A\$4.5 million further boost to critical minerals research by Australian scientific agencies, particularly in downstream applications
- Expanding Austrade's programs to facilitate trade and investment in Australian critical minerals
- Stimulating investment in exploration through the A\$125 million injection into the Exploring for the Future (EFTF) program over four years to expand the program nationwide
- Funding to Geoscience Australia to establish a web-based Critical Minerals Portal that will be a tool for users to assess the economic and geological potential of selected critical minerals within Australia
- A\$20 million funding towards critical minerals projects as part of the Cooperative Research Centre Projects and A\$25 million funding for the Future Battery Industries Cooperative Research Centre.

These Commonwealth Government policy measures are complemented by a range of supportive policy instruments at the state and territory level.

AUSTRALIAN CRITICAL MINERALS PROSPECTUS 2020

Prospectus overview

The first edition of the Australian Critical Minerals Prospectus (the Prospectus) was published in March 2019 and it proved effective at promoting critical minerals projects in Australia. With many projects rapidly advancing – and many new critical minerals projects emerging – it has become necessary to update the Prospectus with this 2020 edition.

To facilitate investment and offtake in Australia's critical minerals sector, the Prospectus includes:

- An introduction to critical minerals and rareearth elements, Australian potential, and global supplies
- A profile of Australia's current production of critical minerals and rankings against global supplies

- A summary of how Australian agencies support the development of critical minerals in Australia
- An analysis of each critical mineral, including characteristics, current supply and demand
- A list of all critical minerals projects in Australia, including mineral inventory, infrastructure and funding.

The Prospectus should be read in conjunction with other Australian Government and industry publications on critical minerals – especially those focused on downstream opportunities. While care has been taken to ensure the information in this volume is accurate, readers should conduct their own due diligence of projects of interest. All data was up-to-date, as of June 2020.

Figure 1: Critical mineral deposits and major mines in Australia¹

Commodity type

- Antimony
- Bismuth, +/- cobalt, +/- indium
- Chromium, +/- cobalt, +/- PGE
- Cobalt
- Platinum-group elements (PGE), +/- cobalt
- Scandium, +/- cobalt, +/- PGE
- Graphite
- O Helium
- Indium
- Lithium, +/- tantalum, +/- niobium
- Magnesium

- Manganese ore
- O Heavy mineral sands (HMS) titanium, zirconium
- 🕨 HMS titanium, zirconium, REE
- Rare-earth elements (REE)
- REE Zirconium, niobium, +/- hafnium, lithium, tantalum, gallium
- 🗕 Rhenium
- Tungsten
- O Titanium
- Titanium, vanadium
- Vanadium

Critical minerals and Australia

Geoscience Australia identifies critical minerals as metals, non-metals and minerals that are considered vital for the economic well-being of the world's major and emerging economies, yet whose supply may be at risk due to geological scarcity, geopolitical issues, trade policy or other factors.²

Individual countries develop their own lists of critical minerals based on the relative importance of particular minerals to their industrial and strategic requirements. Assessments of criticality reflect conditions at a particular time, and are subject to change.

Production and resources in Australia

The Australian Government examined lists of critical minerals published in markets such as the United States, the European Union and Japan, and matched those against Australia's known geological endowment. The result is a list of 24 critical minerals that are either being produced or could be produced in Australia. The list was first identified in *Australia's Critical Minerals Strategy 2019* and can be found in this edition at Table 2.³ These 24 minerals are also identified in the Periodic Table in Figure 2.

Figure 2: Periodic table of the elements overlain with Australia's mineral production, resources and exploration activities. Critical minerals are shown with red letters.

1 H Hydrogen	Australia: a wealth of resources										2 He Hellum						
3 Li Lithium	4 Be Beryllium		Production, resources and exploration				Exploratio	'n		5 B Boron	6 C Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	10 Ne Neon		
11 Na Sodium	12 Mg Magnesium		Resources (demonstrated and inferred) and exploration			Aa	Critical mi	nerals		13 Aluminium	14 Si Silicon	15 P Phosphorus	16 Sulfur	17 Cl Chlorine	18 Ar Argon		
19 K Potassium	20 Ca Calcium	21 Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	26 Fe	27 CO Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Ga Gallium	32 Ge Germanium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	43 TC Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 CS Caesium	56 Ba Barium	57-71 *	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 OS Osmium	77 Ir Iridium	78 Pt Platinum	79 Au Gold	80 Hg Mercury	81 TI Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	89-92 **			1	1						1	1			1	
	★ Lanthanides	57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium	
		89	90	91	92												

Rare-earth elements and current suppliers

Rare-earth elements comprise the fifteen lanthanide series of elements (lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) as well as yttrium (Y). Scandium (Sc) is also commonly included in the rare-earth elements grouping. However, in this Prospectus, scandium (Sc) has been treated as a separate critical mineral to the other sixteen rare-earth elements as its geological occurrences and chemical properties differ from the lanthanides and yttrium.⁴

Variously referred to as 'rare-earth metals', 'rare-earths', 'rare-earth oxides', and 'total rareearth oxides (TREO)', rare-earth elements have unique catalytic, metallurgical, nuclear, electrical, magnetic and luminescent properties.

The lanthanide series of elements can be further subdivided into light rare-earth elements and heavy rare-earth elements. Light rare-earth elements are generally more abundant and less valuable than the heavy rare-earth elements. The major physical and chemical properties – and application examples of the rare-earth elements – are presented in Table 1.

Global producers

Demand for rare-earth elements has historically been met by a relatively small number of producers and mines. In 1992, China surpassed the United States as the world's largest producer of rare-earth oxides. And since the mid-1990s, China has dominated the global supply of rareearth elements. Most production is derived from the very large Bayan Obo iron-niobium-rareearth elements deposit in Inner Mongolia, China, and from lateritic clays in southern China.

In 2019 The United Stated Geological Survey estimated that the largest holders of world economic resources of rare-earth elements were: China (37 per cent); Brazil (18 per cent); Vietnam (18 per cent); Russia (10 per cent); India (6 per cent); and Australia (3 per cent). In relation to world production of rare-earths, China produced 63 per cent, followed by the United States (12 per cent), Myanmar (10 per cent) and Australia (9 per cent).⁵

Table 1: Major physical and chemical properties of the rare-earth elements⁶

Element	Symbol	Atomic number	Atomic weight	Density (gcm ⁻³)	Melting point (°C)	Boiling point (°C)	Crustal abundance (ppm) ⁷	Application examples ⁸
Light rare-earth	elemen	ts						
Lanthanum	La	57	138.90	6.146	918	3469	20	Rechargeable car batteries, high quality camera lenses, night vision goggles, to treat kidney disease and in hydrogen storage
Cerium	Ce	58	140.11	8.160	789	3257	43	Catalytic converters, treatment of burns, self-cleaning ovens, carbon-arc lighting and to reduce UV transmission through glass
Praseodymium	Pr	59	140.90	6.773	931	3127	4.9	High-intensity permanent magnets for electric motors / generators for electric cars and turbines, aircraft engines, and specialised glass
Neodymium	Nd	60	144.24	7.008	1021	3127	20	Powerful magnets for computers, phones, medical equipment, electric cars, turbines and audio systems, and laser crystals
Promethium	Pm	61	145.00	7.264	1042	3000	<0.001°	Thickness gauges and atomic batteries for spacecraft and guided missiles
Samarium	Sm	62	150.36	7.520	1074	1900	3.9	Magnets for small motors, cancer treatment and nuclear reactors
Europium	Eu	63	151.96	5.244	822	1597	1.1	Red and blue colours in LCD screens, anti- forgery marks on banknotes and in nuclear reactor control rods
Heavy rare-earth	n elemer	nts	1		1	'		
Gadolinium	Gd	64	157.25	7.901	1313	3233	3.7	Green phosphors in LCD screens, magnetic resonance imaging and in steel to improve resistance to high temperatures
Terbium	Tb	65	158.92	8.230	1356	3041	0.60	Green phosphors in LCD screens, to combat banknote counterfeiting, to detect microbes, and magnets for electric cars and turbines
Dysprosium	Dy	66	162.50	8.551	1412	2562	3.6	Magnets for electric cars and turbines, metal halide lamps, to treat rheumatoid arthritis and to measure exposure to ionising radiation
Holmium	Ho	67	164.93	8.795	1474	2720	0.77	Nuclear control rods, sonar systems, data storage and laser materials
Erbium	Er	68	167.26	9.066	1529	2510	2.1	Nuclear control rods, for pink colour in glass and ceramics, photographic filters, amplifiers, lasers and for skin treatments
Thulium	Tm	69	168.93	9.321	1545	1727	0.28	Lasers, as a radiation source in x-ray machines and to combat banknote counterfeiting
Ytterbium	Yb	70	173.04	6.966	819	1466	1.9	In portable X-ray machines, lasers, earthquake monitors and for improving strength of stainless steel
Lutetium	Lu	71	174.97	9.841	1663	3315	0.30	Positron Emission Tomography (PET) scanners for 3D images of cellular activity, cancer therapy and for cracking hydrocarbons
Other rare-earth	elemer	nts						
Yttrium	Y	39	88.90	4.469	1522	3337	19	Red colours in televisions, cancer treatments, satellites and superconductors

Australia's competitive position

Australia possesses some of the world's largest recoverable resources of tantalum, zirconium, titanium, lithium, cobalt, tungsten, vanadium, niobium, antimony and manganese ore.¹⁰ Australia is also the world's largest producer of lithium and a top five producer of the rare-earth elements: cobalt, manganese ore, antimony, zirconium and titanium mineral sands. Australia's rareearth element production includes neodymium, praseodymium and dysprosium, which are important for permanent magnet production. Australia has the world's sixth largest rare-earth elements resource base and is one of the few sources of dysprosium outside of China.

Australia's potential to supply critical minerals is demonstrated in Figure 1, which shows Australia's critical minerals deposits and major mines. With demand forecast to rise over the medium term, Australia has a commercial opportunity to build competitive critical minerals export markets, and to improve the domestic and global strategic supply of critical minerals. Australia's current competitive position – in terms of resources and production – is shown in Table 2.

		Economic resources Production					World				
Critical	Australia's	Australia	World	Australia 20	's ranking 18²	Australia	World	Australia 20	's ranking 18²	market value	Largest
Mineral	potential ¹	2018 ²	2019 ³	Position	(%)	2018 ²	2019 ³	Position	(%)	(US\$m)⁴	producer 2019 ³
Antimony	Moderate	142.7 kt	1,500 kt	4	9%	3.57 kt	160 kt	4	3%	153	China (63%)
Beryllium	Moderate	0	N/A	0	0	N/A	260 t	N/A	N/A	15	US (65%)
Bismuth	Moderate	4.9 kt	N/A	N/A	N/A	N/A	19 kt	N/A	N/A	51	China (74%)
Chromium	High	0	570,000 kt	0	0	0	44,000 kt	0	0	408	South Africa (37%)
Cobalt	High	1,353 kt	7,000 kt	2	19%	4.9 kt	140 kt	3	5%	1,576	DRC (71%)
Gallium	High	0	N/A	0	0	0	410 t	0	0	5,275	China (97%)
Germanium	High	0	N/A	0	0	0	130 t	0	0	2,855	China (65%)
Graphite	Moderate	7,250 kt	300,000 kt	8	2%	0	1,100 kt	0	0	341	China (63%)
Hafnium	High	14.5 kt	N/A	N/A	N/A	0	N/A	0	0	5,275	N/A
Helium	Moderate	N/A	N/A	N/A	N/A	4 hm³	160 hm ³	4	3%	4,826	US (53%)
Indium	High	0.1 kt	N/A	N/A	N/A	N/A	760 t	N/A	N/A	5,275	China (39%)
Lithium	High	4,718 kt	17,000 kt	2	30%	57 kt	93 kt	1	63%	1,978	Australia (61%)
Magnesite	Moderate	316 Mt	8,500 Mt	6	4	<1	28 Mt	Minor	Minor	841	China (68%)
Manganese ⁷	High	~104,000 kt 232,000 kt ore	810,000 kt ~365,000 kt ore	5	13%	~3,150 kt 7,000 kt ore	19,000 kt ~42,000 kt ore	3	15%	1,361	South Africa (29%)
Niobium	High	216 kt	>13,000 kt	З	4%	N/A	74 kt	N/A	N/A	15,905	Brazil (88%)
Platinum- group elements	High	31.5 t	69,000 t	Minor	Minor	0.541t	370 t	Minor	Minor	51,234	South Africa (57%)
Rare-earth elements	High	4,120 kt	120,000 kt	6	3%	19 kt	170 kt	2	11%	4,338	China (72%)
Rhenium	Moderate	0.16 kt	2.4 kt	Minor	Minor	0	0.049 kt	0	0	5,275	Chile (55%)
Scandium	High	26.05 kt	N/A	N/A	N/A	0	N/A	0	0	4,338	N/A
Tantalum	High	99.3 kt	>110 kt	1	67%	-	1.8 kt	7	3%	6,029	DRC (41%)
Titanium	High	llmenite: 276,300 kt Rutile: 35,400 kt	Ilmenite: 800,000 kt Rutile: 55,000 kt	Ilmenite: 2 Rutile: 1	Ilmenite: 19% Rutile: 50%	llmenite: 1,400 kt Rutile: 200 kt	Ilmenite: 7,700 kt Rutile: 700 kt	Ilmenite: 3 Rutile: 1	Ilmenite: 15% Rutile: 27%	4,485	Metal sponge: China (40%) Ilmenite: China (27%) Rutile: Australia (29%)
Tungsten	Moderate	394 kt	3,700 kt	2	11%	<1 kt	85 kt	Minor	Minor	571	China (82%)
Vanadium	Moderate	4,646 kt	22,800 kt	3	20%	0	73 kt	0	0	5,099	China (54%)
Zircon	High	79,900 kt	92,500 kt	1	63%	500 kt	2,000 kt	2	25%	407	South Africa (26%)

Table 2: Australian list of critical minerals (balancing the future mineral needs of Australia's strategic and economic partners with Australia's potential to supply such minerals)

Table notes:

N/A = not available.

- 1. Critical Minerals in Australia: A Review of Opportunities and Research Needs, Record 2018/51, Geoscience Australia, Canberra.
- 2. Australia's Identified Mineral Resources 2019, Geoscience Australia, Canberra.
- 3. Mineral Commodity Summaries 2020, United States Geological Survey, Reston.
- 4. United Nations Comtrade Database, http://comtrade.un.org Note: not all commodities have individual market values available; see individual commodity tables for aggregation details.
- 5. Aggregated data for gallium, germanium, hafnium, indium, niobium (columbium), rhenium and vanadium. Germanium also includes germanium oxides and zirconium dioxide. Niobium also includes niobium, tantalum and vanadium ores and concentrates, ferro-alloys and ferro-niobium.
- 6. Aggregated data for rare gases other than argon.
- 7. Geoscience Australia reports manganese ore and the USGS reports manganese content. Worldwide, manganese content in ore ranges from 35% to 54%. A conversion factor of 0.45 has been used to enable approximate comparisons between Australian and world resources and production.
- 8. Aggregated data for alkali or alkaline-earth metals, rare-earth metals, scandium, yttrium and mercury.
- 9. Aggregated data includes niobium, tantalum and vanadium ores and concentrates in addition to specific commodity.

Australian agencies that support the critical minerals sector

Australia's federal, state and territory governments have developed policies, incentives, programs and strategies to support the mining industry. This section identifies the key federal government agencies that support the critical minerals sector. State and territory-level programs are omitted from this Prospectus.

Austrade

Austrade is the Australian Government's lead agency for international trade and investment promotion. Austrade continues to facilitate foreign investment and offtake arrangements in critical minerals to help develop Australian critical minerals projects.

Austrade aims to attract international investment and offtake into critical minerals. The agency does this by leveraging its extensive offshore network – and relationships with federal, state and territory governments – to connect Australian project proponents with targeted opportunities for investment and offtake agreements.

Interested investors, project proponents and offtake partners can contact Austrade via our website (www.austrade.gov.au) or through one of our offshore offices.

Critical Minerals Facilitation Office

The Critical Minerals Facilitation Office (CMFO) is the Federal Government's central coordination point to help grow Australia's critical minerals sector and position Australia globally as a secure and reliable supplier of critical minerals.

The CMFO was established in January 2020 and is part of the Department of Industry, Science, Energy and Resources. The CMFO has three focus areas:

 Leading a national approach on critical minerals, including by delivering a National Critical Minerals Development Roadmap (agreed by resources ministers in all jurisdictions). The CMFO also works closely with state and territory governments, regulators, academics, industry and investors to ensure policy settings support the development and growth of Australia's critical minerals sector. This includes improving approvals processes, unlocking our full resource potential, supporting technological innovation and developing downstream capabilities.

- 2. Working closely with DFAT and Austrade to develop international partnerships. The aim is to improve the functioning of global markets and to promote investment in Australia's critical minerals sector
- **3.** Providing a focal point across all levels of government to support strategically important projects. The office will also help projects to navigate investment and regulatory requirements, and may provide project finance and offtake agreement support.

To find out more about the CMFO's initiatives to grow the critical minerals sector, visit: www.industry.gov.au/criticalminerals, subscribe to Australian Critical Minerals News or email criticalminerals@industry.gov.au.

Export Finance Australia

Export Finance Australia (EFA) is an export credit agency that operates on behalf of the Australian Government. Recently, the Government has directed EFA to place a greater focus on critical minerals projects and related infrastructure. Consequently, EFA will support the diversification of critical minerals supply chains and the expansion of downstream processing in Australia.

Where critical minerals are important to the defence supply chain, finance may be available through the government's Defence Export Facility, which is administered by Export Finance Australia.

In general, EFA's eligibility criteria are as follows:

- The mineral is identified in Australia's Critical Minerals Strategy 2019
- The extracted or processed minerals are for export
- A comprehensive feasibility study has been completed
- Buyers are committed to purchase the project's production
- The project proponents have the necessary financial, technical and commercial capacity.

For access to financing under the Defence Export Facility, projects must be important to defence end-use applications. To find out more about Export Finance Australia's support for Australia's critical minerals sector, visit: exportfinance.gov.au/criticalminerals or call 1800 093 724.

Geoscience Australia

Geoscience Australia is the Australian Government's trusted source of information on Australia's geology and geography. It provides technical capability, geoscience information, innovation and advice on critical minerals.

The agency works with its partners in the state and territory geological surveys to support the responsible development of a diverse critical minerals sector through its programs of continental-scale data acquisition, and the development of tools for mapping, prediction and decision making.

Geoscience Australia is also part of the Australian Government's critical minerals tradedevelopment program and coordinates the activities of the cross-government minerals agency, Australia Minerals.¹¹

Through Australia Minerals, the CMFO and Austrade, Geoscience Australia helps promote Australian critical minerals opportunities and attract investment into the sector. Geoscience Australia's critical minerals activities aim to underpin new exploration technologies, stimulate mineral exploration investment, drive new discoveries and open up new, producing critical minerals provinces.

In 2020, activities are focused on:

- understanding the geology of critical minerals occurrences for better prediction of new deposits
- developing new methods for determining Australia's critical minerals endowment, including unexploited by-product opportunities
- integrating critical minerals and other data (both scientific and economic) through the Australian Critical Minerals Portal to better support prediction and decision-making for the minerals industry and governments

 working with the geological agencies of the United States and Canada on a critical minerals mapping initiative that will help expand and diversify global critical minerals supply chains.

To find out more about Geoscience Australia's critical minerals activities, publications and data, visit: https://www.ga.gov.au/about/projects/resources/critical-minerals.

Additional support

Other forms of support are available at the federal level for the critical minerals sector. For an overview, visit: https://www.industry.gov. au/funding-andincentives/supporting-criticalminerals-projects

The Major Projects Facilitation Agency (MPFA)

provides a single entry point for major project proponents (including for critical minerals) seeking tailored information and facilitation of their regulatory approval requirements. The CMFO works with the MPFA to help companies as they navigate regulatory approvals.

The Australian Government's **Cooperative Research Centre (CRC)** Grants program provides funding to support Australian industries. It supports industry-led collaborations with researchers and the community to address industry-identified problems facing Australia. CRC Projects (CRC-P) Grants provide funding for short-term, industry-led research projects for up to three years.

Financial support may be available for critical minerals projects in Australia through the **Northern Australia Infrastructure Facility** (NAIF) and the **Clean Energy Finance Corporation (CEFC)**.

NAIF is a A\$5bn lending facility to provide loans to infrastructure projects in northern Australia. NAIF investments can be used for the development of new infrastructure or materially enhancing existing infrastructure. NAIF can lend up to 100 per cent of the debt, provided there is appropriate risk-sharing. Loans can be on concessional terms, relative to what a private sector financier can deliver – as long as the infrastructure generates public benefit and there is an ability repay or refinance. Access to dual funding through the EFA as well as the NAIF may be available to eligible projects.

The Clean Energy Finance Corporation (CEFC)

is a specialist investor charged with increasing investment in technologies and businesses with the potential to lower Australia's emissions. The CEFC pursues investment opportunities across the economy. It can support achievement of the Critical Minerals Strategy where there is a demonstrated contribution to renewable energy, energy efficiency or low emissions technologies. The precondition of strong offtake agreements is an essential component to the development of these resources.

CRITICAL MINERAL SUMMARIES: CHARACTERISTICS, SUPPLY, DEMAND AND CRITICALITIES

A summary of each selected critical mineral is set out below.

ANTIMONY (Sb)						
CHARACTERISTICS						
Properties	Silvery-white, shiny, very brittle metal that is a semiconductor and resistant to acids.					
Usages	Antimony is used in flame retardants, as an alloying material for lead and tin, and in micro-capacitors.					
Geological occurrence	Crustal abundance is 0.2 ppm; major antimony-bearing minerals include stibnite and tetrahedrite.					
Mineral system group	Porphyry-epithermal, subaqueo and basin-hosted.	us volcanic-related, orogenic				
Extraction	Main product or co-product (wit	h gold).				
SUPPLY						
World production 2019 ¹	160 kt					
Major producing countries 2019 ¹	China (100 kt) 63% Russia (30 kt) 19% Tajikistan (16 kt) 10%					
World resources 2019 ¹	1,500 kt					
Major resource holders 2019 ¹	China (480 kt) 32% Russia (350 kt) 23% Bolivia (310 kt) 21%					
Australian production 2018 ²	3.57 kt					
Australian resources (EDR) 2018 ²	142.7 kt					
Australian exports	Not available.					
Australian potential for new resources	Developments in processing tec from zinc-lead-silver ores and di deposits in orogenic mineral sys	hnologies are allowing recovery scovery of new antimony-gold tems.				
Recycling	Small amounts recycled from lea	ad-acid batteries.				
DEMAND 2019 ³	Country	Import value (US\$ million)				
Antimony; articles thereof,	Belgium	56				
including waste and scrap	US	49				
	Japan	34				
	UK	3				
	China	2				
SUBSTITUTION	Flame retardant substitutes are hydrated aluminium oxide.	e organic compounds and				

- 1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.
- 2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.
- 3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.

BERYLLIUM (Be)						
CHARACTERISTICS						
Properties	Steel-grey, low-density metal that is hard and brittle at room temperature, is highly toxic and has a high melting point (1,287 °C).					
Usages	Beryllium is used in telecommunications equipment, automotive electronics, and aerospace, defence and industrial components.					
Geological occurrence	Crustal abundance is 1.9 ppm; m include bertrandite, beryl, chrys	ajor beryllium-bearing minerals oberyl and phenakite.				
Mineral system group	Granite-related.					
Extraction	Main product.					
SUPPLY						
World production 2019 ¹	260 t					
Major producing countries 2019 ¹	US (170 t) 65%					
	China (70 t) 27%					
	Mozambique (15 t) 6%					
World resources 2019 ¹	World beryllium resources are not sufficiently well delineated to report consistent figures for each country.					
Major resource holders 2019 ¹	Not available.					
Australian production 2018 ²	Not available.					
Australian resources (EDR) 2018 ²	Not available.					
Australian exports	Not available.					
Australian potential for new resources	Discovery of new pegmatitic res mineral system.	ources in the igneous-related				
Recycling	Beryllium is recycled mostly from during the manufacture of beryl consumption is recycled from sc	n new scrap generated lium products. About 19% of rap.				
DEMAND 2019 ³	Country	Import value (US\$ million)				
Beryllium and articles thereof;	South Korea	4				
wrought, unwrought beryllium, powders: slag, ash and residues:	UK	3				
waste and scrap	US	3				
	Poland	1				
	Canada	1				
SUBSTITUTION	A few substitutes are available f effective.	or beryllium but are less				

- 1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.
- 2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.
- 3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.

BISMUTH (Bi)						
CHARACTERISTICS						
Properties	Silvery-white brittle metal that has low thermal conductivity and is diamagnetic.					
Usages	Bismuth is often used in free-machining steels, brass, pigments, solders (as a non-toxic replacement for lead) and pharmaceuticals. I is also used as an additive to enhance metallurgical quality in found applications and as a triggering mechanism in fire sprinklers.					
Geological occurrence	Crustal abundance is 0.18 ppm; n include bismuthinite. Bismuth can minor constituent in galena.	najor bismuth-bearing minerals n also be an important trace to				
Mineral system group	Porphyry-epithermal, granite-rel related, orogenic and basin-host	ated, subaqueous volcanic- ed.				
Extraction	By-product of lead smelting.					
SUPPLY						
World production 2019 ¹	19 kt					
Major producing countries 2019 ¹	China (14 kt) 74%					
	Laos (3 kt) 16%					
	South Korea (0.9 kt) 5%					
World resources 2019 ¹	Not available.					
Major resource holders 2019 ¹	Not available.					
Australian production 2018 ²	Not available.					
Australian resources (EDR) 2018 ²	Not available.					
Australian exports	Not available.					
Australian potential for new resources	Recovery of bismuth from ore and operations; minor potential for ska porphyry-epithermal and granite-r	concentrates from existing mining rn and related deposit types in the elated mineral systems.				
Recycling	Bismuth is recycled from new and	l old scrap.				
DEMAND 2019 ³	Country	Import value (US\$ million)				
Bismuth; articles thereof, including	US	17				
waste and scrap	China	13				
	Belgium	13				
	Canada	2				
	Japan	2				
SUBSTITUTION	Titanium dioxide coated mica flakes are substitutes in pigments; indium can replace bismuth in low-temperature solders; resins can replace bismuth in machining; and glycerine-filled glass bulbs can replace bismuth alloys in fire sprinkler triggering devices.					

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

 ${\tt 3. Trade \ data \ sourced \ from \ the \ United \ Nations \ Comtrade \ Database, \ http://comtrade.un.org.}$

CHROMIUM (Cr)					
CHARACTERISTICS					
Properties	Hard metal with a high melting point (1,907 °C) that is resistant to tarnish. Chromium is antiferromagnetic at room temperature and paramagnetic above 38 °C. It is passivated by oxygen, making it stable to acids.				
Usages	Chromium is used in stainless and heat-resistant steels, superalloys, non-ferrous alloys and pigments.				
Geological occurrence	Crustal abundance is 135 ppm. Cl include chromite.	nromium-bearing minerals			
Mineral system group	Mafic-ultramafic orthomagmatic	and surficial.			
Extraction	Main product.				
SUPPLY					
World production 2019 ¹	44,000 kt				
Major producing countries 2019 ¹	South Africa (17,000 kt) 37% Turkey (10,000 kt) 23% Kazakhstan (6,700 kt) 15%				
World resources 2019 ¹	570,000 kt				
Major resource holders 2019 ¹	Kazakhstan (230,000 kt) 41% South Africa (200,000 kt) 36% India (100,000 kt) 18%				
Australian production 2018 ²	0				
Australian resources (EDR) 2018 ²	0				
Australian exports	0				
Australian potential for new resources	Development of known deposits a large igneous provinces.	and discovery of new deposits in			
Recycling	Recycled from scrap chromium-b Recycled chromium accounts for	earing steel and alloys. about 30% of consumption.			
DEMAND 2019 ³	Country	Import value (US\$ million)			
Chromium ores and concentrates;	US	191			
chromium and articles thereof; wrought: unwrought. powders:	Japan	76			
slag, ash and residues; waste and	Belgium	23			
scrap	Italy	21			
	South Korea	21			
SUBSTITUTION	Chromium has no substitute in st scrap can substitute for ferrochr uses.	ainless steel. Chromium-bearing romium in some metallurgical			

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

COBALT (Co)					
CHARACTERISTICS					
Properties	Ferromagnetic metal that is hard	and lustrous.			
Usages	Emerging technologies that could use cobalt include lithium batteries and synthetic fuels. The most important present use is in superalloys, steel and pigments.				
Geological occurrence	Crustal abundance is 26.6 ppm; n include cobaltite and cobaltian py	najor cobalt-bearing minerals yrite.			
Mineral system group	Mafic-ultramafic orthomagmatic	and basin-hosted.			
Extraction	By-product, co-product of coppe	er mining.			
SUPPLY	·				
World production 2019 ¹	140 kt				
Major producing countries 2019 ¹	Democratic Republic of the Congo (100 kt) 71% Russia (6.1 kt) 4% Australia (4.9 kt) 4%				
World resources 2019 ¹	7,000 kt				
Major resource holders 2019 ¹	Democratic Republic of the Congo (3,600 kt) 51% Australia (1,353 kt) 19% Cuba (500 kt) 7%				
Australian production 2018 ²	4.9 kt (5%)				
Australian resources (EDR) 2018 ²	1,353 kt (19%)				
Australian exports	Not available.				
Australian potential for new resources	Development of known deposits a large igneous provinces. Extractio copper deposits.	and discovery of new deposits in on of cobalt from basin-hosted			
Recycling	Cobalt recycling is insignificant.				
DEMAND 2019 ³	Country	Import value (US\$ million)			
Cobalt ores and concentrates;	US	559			
cobalt mattes and other	Japan	415			
metallurgy, cobalt and articles	UK	166			
thereof, including waste and scrap	Belgium	149			
	South Korea	90			
SUBSTITUTION	Nickel-based superalloys can substitute for cobalt superalloys; various materials can substitute in steel and various substitutions are possible in batteries. In some applications substitution results in a loss of performance.				

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

GALLIUM (Ga)					
CHARACTERISTICS					
Properties	Silvery-white metal that has a low melting point (29.7 °C), a high boiling point (2,204 °C) and is a semiconductor.				
Usages	Gallium is used in integrated circuit photodetectors and thin layer photodetectors and thin layer photogenetics.	s, laser diodes, LEDs, tovoltaics.			
Geological occurrence	Crustal abundance is 16 ppm; in n element in bauxite and sphalerite	ature gallium occurs as a trace e.			
Mineral system group	Subaqueous volcanic-related; orog	enic basin-hosted and surficial.			
Extraction	By-product of zinc mining.				
SUPPLY					
World production 2019 ¹	320 t (primary production) 205 t (high-purity refined produc	tion)			
Major producing countries 2019 ¹	Primary gallium: China (310 t) 97% Russia (4 t) 1% Ukraine (4 t) 1% Refinery production: China, Japan, Slovakia, US.				
World resources 2019 ¹	Quantitative estimates are not available. Gallium is a by-product of treating bauxite and from zinc-processing residues. Less than 10% of gallium in bauxite and zinc is potentially recoverable.				
Major resource holders 2019 ¹	Not available.				
Australian production 2018 ²	Not available.				
Australian resources (EDR) 2018 ²	Not available.				
Australian exports	Not available.				
Australian potential for new resources	Extraction from ore and concentr operations, particularly bauxite an	ates from existing mining nd zinc mines.			
Recycling	Recycled from scrap generated ir arsenide-based products.	n the manufacture of gallium-			
DEMAND 2019 ³	Country	Import value (US\$ million)			
No specific data for gallium.	US	233			
Data are aggregated for gallium, germanium, hafnium, indium.	Japan	119			
niobium (columbium), rhenium	UK	42			
and vanadium; articles thereof,	South Korea	34			
waste and scrap, powders.	Belgium	18			
SUBSTITUTION	Organic compounds liquid crystals substitute for LEDs in visual displays; indium phosphide components can substitute gallium- arsenide-based infrared laser diodes in some cases and silicon substitutes in solar cell technology.				

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

GERMANIUM (Ge)						
CHARACTERISTICS						
Properties	Grey-white metalloid that is hard, lustrous and semiconducting.					
Usages	Germanium is used in fibre and infrared optics, as a polymerisation catalyst and in electronic and solar electric applications.					
Geological occurrence	Crustal abundance is 1.3 ppm; in trace element in sphalerite and c	nature germanium occurs as a oal.				
Mineral system group	Subaqueous volcanic-related, or	ogenic and basin-hosted.				
Extraction	By-product of zinc processing.					
SUPPLY	·					
World production 2019 ¹	130 t refinery production. (US pro	oduction not included).				
Major producing countries 2019 ¹	China (85 t) 65% Russia (6 t) 5% US not available.					
World resources 2019 ¹	Data on the recoverable germanium content of zinc ores are not available.					
Major resource holders 2019 ¹	The USGS notes that US reserves of zinc may contain as much as 2,500 tons of germanium.					
Australian production 2018 ²	Not available.					
Australian resources (EDR) 2018 ²	Not available.					
Australian exports	Not available.					
Australian potential for new resources	Extraction from ores and concent particularly zinc mines and possib	crates from existing mines le coal mines.				
Recycling	Germanium metal used in the opt from new scrap. Worldwide, appr consumption is from recycled ma	tics industry is routinely recycled oximately 30% of germanium terials.				
DEMAND 2019 ³	Country	Import value (US\$ million)				
No specific data for germanium.	US	89				
Data are aggregated for gallium,	Japan	61				
niobium (columbium), rhenium	South Korea	35				
and vanadium; articles thereof,	Italy	20				
unwrought and other, including waste and scrap, powders; plus germanium oxides and zirconium dioxide.	China	18				
SUBSTITUTION	Silicon substitutes for germanium in some electronic applications. Zinc selenide can be substituted in infrared applications but at a performance loss. Tantalum, antimony and titanium can be substituted as a polymerisation catalyst.					

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries* 2020. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

GRAPHITE (C)					
CHARACTERISTICS					
Properties	Iron-black mineral with a metallic-earthy lustre that is an electrical and thermal conductor, has high thermal resistance, is inert and can be used as a lubricant.				
Usages	Uses of graphite include carbon-graphite composites, electronics, foils, friction materials and special lubricants applications. Flexible graphite products and large-scale fuel cell application developments may become high users of graphite.				
Geological occurrence	Crustal abundance is 1,800 ppm one of a number of forms of carb	(total C). In nature, graphite is on.			
Mineral system group	(Metamorphosed) basin-hosted.				
Extraction	Main production.				
SUPPLY					
World production 2019 ¹	1,100 kt				
Major producing countries 2019 ¹	China (700 kt) 63% Mozambique (100 kt) 9% Brazil (96 kt) 9%				
World resources 2019 ¹	300,000 kt				
Major resource holders 2019 ¹	Turkey (90,000 kt) 30% China (73,000 kt) 24% Brazil (72,000 kt) 24%				
Australian production 2018 ²	0 kt				
Australian resources (EDR) 2018 ²	7,250 kt				
Australian exports	0 kt				
Australian potential for new resources	Development of existing resource metamorphosed reduced-C basin	s and new discoveries in s.			
Recycling	Refractory graphite material is re brake linings and thermal insulati flake graphite is technically feasi	ecycled into products including ons. Recovery of high-quality ble but not currently practised.			
DEMAND 2019 ³	Country	Import value (US\$ million)			
Natural mineral	Japan	103			
	South Korea	92			
	US	60			
	Poland	25			
	Hungary	20			
SUBSTITUTION	Graphite has few suitable substit may be used in steel and some ba	utes. Synthetic graphite powder ttery applications.			

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020.* Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

HAFNIUM (Hf)			
CHARACTERISTICS			
Properties	A shiny, silvery, corrosion-resista	A shiny, silvery, corrosion-resistant metal.	
Usages	Hafnium is used in the control rods of nuclear reactors, and in vacuum tubes, and has been used as an alloying agent with iron, titanium, niobium and other metals. Hafnium oxide may be used as an electrical insulator in microchips.		
Geological occurrence	Crustal abundance is 5.8 ppm. Su especially in zircon.	ıbstitutes for zirconium,	
Mineral system group	Heavy mineral sands, pegmatites	, carbonatite intrusions.	
Extraction	By-product, co-product of zircon	mining.	
SUPPLY			
World production 2019 ¹	Not available.		
Major producing countries 2019 ¹	Not available.		
World resources 2019 ¹	World resources of hafnium are associated with those of zircon and baddeleyite. Quantitative estimates of hafnium resources are not available.		
Major resource holders 2019 ¹	Not available.		
Australian production 2018 ²	Not available.		
Australian resources (EDR) 2018 ²	The Dubbo Zirconia Project has a Measured Resource containing 14.5 kt of hafnium, including 6.4 kt within Proved Ore Reserves.		
Australian exports	Not available.		
Australian potential for new resources	The Dubbo Zirconia Project proposes to produce zirconium carbonate and more than 200 t per year of hafnium oxide, as well as niobium, rare-earth, and tantalum products.		
Recycling	Hafnium recycling is insignificant		
DEMAND 2019 ³	Country	Import value (US\$ million)	
No specific data for hafnium.	US	233	
Data is aggregated for gallium, germanium, hafnium, indium,	Japan	119	
niobium (columbium), rhenium	UK	42	
and vanadium; articles thereof, unwrought and other, including	South Korea	34	
waste and scrap, powders.	Belgium	18	
SUBSTITUTION	Silver-cadmium-indium control rods are used in lieu of hafnium at numerous nuclear power plants.		

- 1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020.* Figures for 2019 are estimates.
- 2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.
- 3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.

HELIUM (He)		
CHARACTERISTICS		
Properties	Colourless, odourless, tasteless, non-toxic gas that has the lowest boiling and melting points of all the elements.	
Usages	Helium is used in cryogenics, coolin fibre optics.	g systems, MRI scanners, LCD and
Geological occurrence	Helium, a product of radioactive decay of heavy elements, accumulates with natural gas in hydrocarbon traps.	
Mineral system group	Basin-hosted.	
Extraction	By-product of natural gas produc	ction.
SUPPLY		
World production 2019 ¹	160 hm3⁴	
Major producing countries 2019 ¹	US extracted from natural gas fields (64 hm³) 40% Qatar (45 hm³) 28% US extracted from Cliffside Field (26 hm³) 16%	
World resources 2019 ¹	World helium resources are not sufficiently well delineated to report a consistent figure for all countries.	
Major resource holders 2019 ¹	US (3,900 hm ³) 53% Algeria (1,800 hm ³) 24% Russia (1,700 hm ³) 23%	
Australian production 2018 ²	4 hm ³ (source USGS)	
Australian resources (EDR) 2018 ²	Not available.	
Australian exports	Not available.	
Australian potential for new resources	Extraction of helium from existing and new natural gas fields.	
Recycling	Helium is seldom recycled. Japan and Western Europe recycle when economically viable.	
DEMAND 2019 ³	Country	Import value (US\$ million)
No specific data for helium. Data is	Japan	117
for rare gases other than argon.	UK	94
	US	74
	Belgium	73
	Canada	26
SUBSTITUTION	There is no substitute for helium in cryogenic applications if temperatures are below -256 °C. Argon can substitute in welding and in lighter-than-air applications.	

- 1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.
- 2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.
- 3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.
- 4. Helium is measured in million cubic metres (hm³).

INDIUM (In)		
CHARACTERISTICS		
Properties	Silvery-white, dense metal that forms alloys with most other metals and generally increases strength, corrosion resistance and hardness.	
Usages	Indium tin oxide (ITO) thin-film coatings are used for electrically conductive purposes in flat-panel, TV and smartphone devices. Other uses include electrical components and semiconductors, solders, alloys and compounds.	
Geological occurrence	Crustal abundance is 0.052 ppm; indium occurs mostly as a trace element in sphalerite.	
Mineral system group	Subaqueous volcanic-related, orc	genic and basin-hosted.
Extraction	By-product of zinc-lead, copper a	nd tin mining and smelting.
SUPPLY		
World production 2019 ¹	Refinery production 760 t	
Major producing countries 2019 ¹	China (300 t) 39% South Korea (240 t) 32% Japan (75 t) 10% Canada (60 t) 8%	
World resources 2019 ¹	Not available.	
Major resource holders 2019 ¹	Not available.	
Australian production 2018 ²	Not available.	
Australian resources (EDR) 2018 ²	Not available.	
Australian exports	Not available.	
Australian potential for new resources	Extraction from ores and concentrates from existing mining operations, particularly zinc mines.	
Recycling	Indium is recycled from scrap tungsten-bearing steel and superalloys. Recycling is very inefficient and constitutes a very small (<1%) fraction of supply.	
DEMAND 2019 ³	Country	Import value (US\$ million)
No specific data for indium.	US	233
Data is aggregated for gallium, germanium, hafnium, indium,	Japan	119
niobium (columbium), rhenium and vanadium; articles thereof, unwrought and other, including	UK	42
	South Korea	34
waste and scrap, powders.	Belgium	18
SUBSTITUTION	Antimony can substitute for indium in ITO. Carbon nanotube coatings and organic compounds substitutes for ITO in solar cells, flexible displays and touch screens; hafnium can replace indium in nuclear reactor control rod alloys.	

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

LITHIUM (Li)			
CHARACTERISTICS			
Properties	Shiny, silvery, tough and soft metal that forms strong alloy, is very reactive and has the lowest density of all known solids at room temperature.		
Usages	Lithium is used in batteries, cerami	ics and glass.	
Geological occurrence	Crustal abundance is 16 ppm; lith and lepidolite, but also in salt lake	Crustal abundance is 16 ppm; lithium occurs mostly in spodumene and lepidolite, but also in salt lake and oil field brines.	
Mineral system group	Intrusion-related and surficial.		
Extraction	Main product.		
SUPPLY			
World production 2019 ¹	93 kt (excludes US production)		
Major producing countries 2019 ¹	Australia (57 kt) 61% Chile (18 kt) 19% China (7.5 kt) 8%		
World resources 2019 ¹	17,000 kt		
Major resource holders 2019 ¹	Chile (8,600 kt) 51% Australia (4,718 kt) 28% Argentina (1,700 kt) 10%		
Australian production 2018 ²	57 kt		
Australian resources (EDR) 2018 ²	4,718 kt		
Australian exports	Not available.		
Australian potential for new resources	Identification of lithium resources associated with known and new pegmatite fields, and discovery of lithium-enriched salt lakes.		
Recycling	Small amounts of lithium are recycled from batteries; recycling is increasing.		
DEMAND 2019 ³	Country	Import value (US\$ million)	
Lithium oxide and hydroxide; lithium	South Korea	869	
carbonates	Japan	798	
	US	123	
	Belgium	110	
	Canada	21	
SUBSTITUTION	Battery substitution includes calcium, magnesium and zinc. Various substitutions are available for ceramics and glass.		

- 1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.
- 2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.
- 3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.

MAGNESIUM (Mg)		
CHARACTERISTICS		
Properties	Shiny, grey, light metal.	
Usages	Magnesium is used in aluminium alloys, die-casting (alloyed with zinc), removal of sulphur during the production of iron and steel, and the production of titanium.	
Geological occurrence	Magnesium is the seventh most a crust at about 2.5%.	bundant element in the Earth's
Mineral system group	Metamorphosed mafic-ultramafic	orthomagmatic and basin-hosted.
Extraction	Extracted from dolomite, talc an	d magnesite; main product.
SUPPLY	1	
World production 2019 ¹	1,100 kt metal 28 Mt magnesite	
Major producing countries 2019 ¹	Metal: China (900 kt) 75%; Russia (80 kt) 7%; Kazakhstan (25 kt) 2% Magnesite: China (19 Mt) 68%; Turkey (2 Mt) 7%; Brazil (1.7 Mt) 6%	
World resources 2019 ¹	Magnesium metal: not available. Magnesite: 8,500 Mt Magnesium metal is derived from seawater, natural brines, dolomite, serpentine and other minerals. The resources for this	
Major resource holders 2019 ¹	Magnesium metal: not available. Magnesite: Russia (2,300 Mt) 27%; North Korea (2,300 Mt) 27%; China (1,000 Mt) 12%	
Australian production 2018 ²	Magnesite: <1 Mt	
Australian resources (EDR) 2018 ²	Magnesite: 316 Mt	
Australian exports	Not available.	
Australian potential for new resources	Australia currently produces talc, from which magnesite can be processed. Potential sources are abundant (e.g. serpentinised mafic magmatic rocks, dolomite) but must be cheap to produce.	
Recycling	Magnesium is recovered from bot	th old and new scrap.
DEMAND 2019 ³	Country Import value (US\$ million)	
Magnesium; articles thereof,	US	221
including waste and scrap	Canada	218
	Japan	92
	Mexico	60
	Romania	59
SUBSTITUTION	Aluminium and zinc may substitue and wrought products. The light advantage over them; however, t disadvantage.	te for magnesium in castings weight of magnesium is an he high cost of magnesium is a

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

 ${\tt 3. Trade \ data \ sourced \ from \ the \ United \ Nations \ Comtrade \ Database, \ http://comtrade.un.org.}$

MANGANESE (Mn)			
CHARACTERISTICS			
Properties	Silvery-grey metal that is hard, ve	Silvery-grey metal that is hard, very brittle and paramagnetic.	
Usages	Manganese is alloyed in steel and batteries and fertiliser.	aluminium, and is used in	
Geological occurrence	Crustal abundance is 770 ppm; th pyrolusite.	ne main manganese mineral is	
Mineral system group	Basin-hosted and surficial.		
Extraction	Main product.		
SUPPLY			
World production 2019 ^{1,4}	19,000 kt		
Major producing countries 2019 ^{1,4}	South Africa (5,500 kt) 29% Australia (3,200 kt) 17% Gabon (2,400 kt) 13%		
World resources 2019 ^{1,4}	810,000 kt		
Major resource holders 2019 ^{1,4}	South Africa (260,000 kt) 32% Ukraine (140,000 kt) 17% Brazil (140,000 kt) 17%		
Australian production 2018 ²	7,000 kt manganese ore		
Australian resources (EDR) 2018 ²	232,000 kt manganese ore		
Australian exports	Approximately 90% of Australian manganese ore is exported. The remainder goes to South32 Ltd's TEMCO smelter in Tasmania.		
Australian potential for new resources	Further discoveries are possible in shallow environments of marine basins.		
Recycling	Minor amounts of manganese are recovered along with iron from steel slag.		
DEMAND 2019 ³	Country Import value (US\$ million)		
Manganese ores and concentrates,	Japan	480	
including ferruginous manganese ores and concentrates with a manganese content of 20% or more, calculated on dry weight; manganese articles thereof	South Korea	456	
	US	228	
	Belgium	38	
including waste and scrap	Poland	34	
SUBSTITUTION	Manganese has no satisfactory substitute in major applications.		

- 1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.
- 2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.
- 3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.
- 4. The USGS reports manganese content. For Australia, a conversion factor of 0.45 is used to convert manganese ore to manganese content.

NIOBIUM (Nb)			
CHARACTERISTICS			
Properties	Soft and ductile metal with good resistance to organic and inorganic acids.		
Usages	Niobium is used in micro-capacito	rs, steel and ferroalloys.	
Geological occurrence	Crustal abundance is 8 ppm; niob minerals such as columbite, pyro	ium occurs as a minor element in chlore and euxinite.	
Mineral system group	Granite-related and alkaline intru	ision-related.	
Extraction	Co-product, by-product.		
SUPPLY			
World production 2019 ¹	74 kt		
Major producing countries 2019 ¹	Brazil (65 kt) 88% Canada (7.6 kt) 10%	Brazil (65 kt) 88% Canada (7.6 kt) 10%	
World resources 2019 ¹	>13,000 kt		
Major resource holders 2019 ¹	Brazil (11,000 kt) 77% Canada (1,600 kt) 17%		
Australian production 2018 ²	Not available.		
Australian resources (EDR) 2018 ²	216 kt		
Australian exports	Not available.		
Australian potential for new resources	Production as a by-product of rare-earth element mining operations in alkaline intrusion-related systems and also from pegmatites from granite-related mineral systems.		
Recycling	Recycled from scrap niobium-bearing steel and superalloys, possibly up to 20%.		
DEMAND 2019 ³	Country	Import value (US\$ million)	
No specific data for niobium.	US	599	
Data is aggregated for gallium, germanium, hafnium, indium,	Japan	317	
niobium (columbium), rhenium	South Korea	217	
and vanadium; articles thereof, unwrought and other, including waste and scrap, powders. Also	Belgium	71	
	Italy	34	
niobium, tantalum, and vanadium ores and concentrates. as well as, ferro-alloys and ferro-niobium.			
SUBSTITUTION	Substitution by molybdenum and vanadium in high-strength, low- alloy steel and by tantalum and titanium in stainless and high- strength steels is possible, but it may involve higher costs and/or a loss in performance.		

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

 ${\tt 3. Trade \ data \ sourced \ from \ the \ United \ Nations \ Comtrade \ Database, \ http://comtrade.un.org.}$

PLATINUM-GROUP ELEMENTS		
CHARACTERISTICS		
Properties	Metals characterised by catalytic properties, resistance to wear, tarnish and chemical attack, and by stable electrical properties.	
Usages	Platinum and palladium are both used in catalytic converters. Platinum is used in electronic applications and fuel cells, and palladium is used in seawater desalination.	
Geological occurrence	Crustal abundances of platinum-group elements are 0.57 ppb (ruthenium), 0.2 ppb (rhodium), 1.5 ppb (palladium), 0.041 ppb (osmium), 0.037 ppb (iridium) and 1.5 ppb (platinum). Platinum-group elements occur as metallic alloys, sulfide and arsenide minerals.	
Mineral system group	Mafic-ultramafic orthomagmatic surficial.	, alkaline intrusion-related and
Extraction	Main product, by-product.	
SUPPLY		
World production 2019 ¹	Platinum 180 t	
	Palladium 190 t	
Major producing countries 2019 ¹	South Africa (210 t) 57%	
	Russia (108 t) 29%	
	Canada (27.4 t) 7%	
World resources 2019 ¹	69 kt	
Major resource holders 2019 ¹	South Africa (63 kt) 91%	
	Kussia (3.9 Kt) 6% Zimbabwa (1.2 kt) 2%	
Australian production 2018 ²	0.541+	
Australian production 2018	21 5 +	
Australian experts		
Australian exports	Not available.	
resources	The greatest potential for platinum-group elements production is from mafic-ultramafic bodies associated with major large igneous provinces. Platinum-group elements can be produced as by- product from existing nickel mines.	
Recycling	Recycling from industrial process catalysts and of platinum-group elements equipment.	
DEMAND 2019 ³	Country	Import value (US\$ million)
Platinum, palladium, osmium,	US	13,505
iridium, ruthenium, rhodium, unwrought, semi-manufactured, powder. Also metal, wire cloth or grill catalysts.	UK	10,318
	Japan	9,556
	China	7,904
	Belgium	2,546
SUBSTITUTION	Motor vehicles substitute palladium for platinum in catalytic converters. Some platinum-group elements can be substituted for the other platinum-group elements.	

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

 ${\tt 3. Trade \ data \ sourced \ from \ the \ United \ Nations \ Comtrade \ Database, \ http://comtrade.un.org.}$

Rare-earth ELEMENTS (excluding scandium Sc)		
CHARACTERISTICS		
Properties	The 15 lanthanide elements plus yttrium are here grouped as rare-earth elements (chemists often include scandium). These 16 rare-earth elements have a variety of properties.	
Usages	Rare-earth elements are used in r alloys, polishing powders, phosph superconductors.	nagnets, catalysts, metal ors, energy storage and
Geological occurrence	Crustal abundances are 31 ppm (yttrium), 20 ppm (lanthanum), 43 ppm (cerium), 4.9 ppm (praseodymium), 20 ppm (neodymium), 3.9 ppm (samarium), 1.1 ppm (europium), 3.7 ppm (gadolinium), 0.6 ppm (terbium), 3.6 ppm (dysprosium), 0.77 ppm (holmium), 2.1 ppm (erbium), 0.28 ppm (thulium), 1.9 ppm (ytterbium), and 0.30 ppm (lutetium). Rare-earth elements occur as minor to trace elements in many minerals, but major rare-earth element- bearing minerals include carbonates (e.g. bastnäsite), phosphates (e.g. monazite, xenotime) and silicates (e.g. allanite).	
Mineral system group	Granite-related, iron-oxide copper-gold, alkaline intrusion- related, surficial (lanthanides).	
Extraction	Main product, co-product.	
SUPPLY		
World production 2019 ¹	170 kt rare-earth oxides (REO)	
Major producing countries 2019 ¹	China (120 kt REO) 72% Australia (19 kt REO) 11% US (15 kt REO) 9%	
World resources 2019 ¹	120,000 kt REO	
Major resource holders 2019 ¹	China (44,000 kt REO) 38% Brazil (22,000 kt REO) 19% Vietnam (22,000 kt REO) 19%	
Australian production 2018 ²	19 kt REO	
Australian resources (EDR) 2018 ²	4120 kt REO + Y ₂ O ₃	
Australian exports	Not available.	
Australian potential for new resources	Alkaline intrusion-related and iron-oxide copper-gold systems have high potential for rare-earth and associated elements. The Olympic Dam mine is one of the two largest rare-earth element deposits globally, but currently these elements are not recovered.	
Recycling	Small amounts; mostly magnet scrap.	
DEMAND 2019 ³	Country	Import value (US\$ million)
Alkali or alkaline-earth metals;	Japan	274
rare-earth metals, scandium and yttrium, whether or not intermixed or interalloved: mercury	US	82
	UK	31
	Switzerland	12
	Canada	11
SUBSTITUTION	Substitutes are available but less effective.	

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

RHENIUM (Re)			
CHARACTERISTICS			
Properties	Very dense metal with a very high melting point (3,186 °C).		
Usages	Rhenium is used in superalloys for engine components and in catalyt	high-temperature turbine ic converters.	
Geological occurrence	Crustal abundance is 0.188 ppb; as a minor element in molybdenit	the major source of rhenium is e.	
Mineral system group	Porphyry-epithermal and iron-ox	ide copper-gold.	
Extraction	By-product.		
SUPPLY			
World production 2019 ¹	49 t		
Major producing countries 2019 ¹	Chile (27 t) 55% Poland (9.3 t) 19% US (8.3 t) 17%	Chile (27 t) 55% Poland (9.3 t) 19% US (8.3 t) 17%	
World resources 2019 ¹	2,400 t		
Major resource holders 2019 ¹	Chile (1,300 t) 55% US (400 t) 17% Russia (310 t) 13%		
Australian production 2018 ²	Not available.		
Australian resources (EDR) 2018 ²	Not available.		
Australian exports	Not available.		
Australian potential for new resources	Further discovery of molybdenum-rich deposits in the iron-oxide copper-gold mineral system, and possible recovery as a by-product from existing porphyry copper mines.		
Recycling	Rhenium in spent platinum-rhenium catalysts are routinely recycled. Some rhenium is recycled from other alloys.		
DEMAND 2019 ³	Country Import value (US\$ million)		
No specific data for rhenium.	US	233	
Data is aggregated for gallium, germanium, hafnium, indium, niobium (columbium), rhenium and vanadium; articles thereof,	Japan	119	
	UK	42	
	South Korea	34	
waste and scrap, powders.	Belgium	18	
SUBSTITUTION	Rhodium and rhodium-iridium can substitute in high-temperature thermocouples; numerous metals may substitute for rhenium in catalyst applications.		

^{1.} World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries* 2020. Figures for 2019 are estimates.

^{2.} Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

SCANDIUM (Sc)		
CHARACTERISTICS		
Properties	A silvery-white metallic element.	
Usages	Uses include in aluminium-scandium alloys, solid oxide fuel cells, ceramics, electronics, lasers, lighting and radioactive isotopes. Scandium isotopes may be used as tracing agents in oil refining.	
Geological occurrence	Average crustal abundance is 22	ppm.
Mineral system group	Mafic-ultramafic igneous-related	l mineral systems.
Extraction	By-product or main product.	
SUPPLY		
World production 2019 ¹	Not available.	
Major producing countries 2019 ¹	Production in recent years from China, Kazakhstan, Russia and Ukraine.	
World resources 2019 ¹	Not available.	
Major resource holders 2019 ¹	Identified scandium resources has occurred in in Australia, Canada, China, Kazakhstan, Madagascar, Norway, the Philippines, Russia, Ukraine and the US.	
Australian production 2018 ²	Not available.	
Australian resources (EDR) 2018 ²	26.05 kt	
Australian exports	Not available.	
Australian potential for new resources	Good potential in weathered mafic intrusions.	
Recycling	None.	
DEMAND 2019 ³	Country	Import value (US\$ million)
Alkali or alkaline-earth metals;	Japan	274
rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed; mercury	US	82
	UK	31
	Switzerland	12
	Canada	11
SUBSTITUTION	Titanium and aluminium high-strength alloys and carbon-fibre materials; may substitute in high-performance scandium-alloy applications.	

- 1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries* 2020. Figures for 2019 are estimates.
- 2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

TANTALUM (Ta)		
CHARACTERISTICS		
Properties	Blue-grey, lustrous, hard, tough and ductile metal that is very resistant to corrosion from acids, has high thermal and electrical conductivity, and has a high melting point (3,107 °C).	
Usages	Tantalum is used in electronic mic technology.	ro-capacitors and medical
Geological occurrence	Crustal abundance is 0.7 ppm; the major source of tantalum is tantalite and columbite, although there are a number of other rare tantalum minerals.	
Mineral system group	Granite-related.	
Extraction	Main product, co-product, by-pro	oduct.
SUPPLY		
World production 2019 ¹	1.8 kt	
Major producing countries 2019 ¹	Congo (0.74 kt) 41%	
	Rwanda (0.37 kt) 21%	
	Brazil (0.25 kt) 14%	
World resources 2019 ¹	>110 kt	
Major resource holders 2019 ¹	Australia (99.3 kt) 74%	
	Brazil (34 kt) 26%	
Australian production 2018 ²	0.06 kt	
Australian resources (EDR) 2018 ²	99.3 kt	
Australian exports	Not available.	
Australian potential for new resources	Reopening of historic mines (e.g. Wodgina) and discovery of tantalum-bearing pegmatites in known and greenfield pegmatite fields.	
Recycling	Recycling is limited, mostly from new scrap, tantalum-bearing steel and superalloys.	
DEMAND 2019 ³	Country Import value (US\$ million)	
Tantalum; articles thereof,	US	301
including waste and scrap. Also includes niobium, tantalum, vanadium ores and concentrates.	South Korea	79
	Japan	55
	Mexico	30
	Czech Republic	30
SUBSTITUTION	Titanium and aluminium high-strength alloys and carbon-fibre materials; may substitute in high-performance scandium-alloy applications.	

- 1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.
- 2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.
- 3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.
| TITANIUM (Ti) | |
|--|--|
| CHARACTERISTICS | |
| Properties | Low-density metal with high mechanical strength, high melting point, low thermal expansion coefficient and a high resistance to saltwater and acids. |
| Usages | Titanium is used in titanium oxide pigments, carbides and chemicals, and as an alloy in steel and superalloys. |
| Geological occurrence | Crustal abundance is approximately 0.43%; the major source of titanium is ilmenite but other significant titanium minerals include titanite and rutile (and other TiO ₂ polymorphs). |
| Mineral system group | Mafic-ultramafic orthomagmatic and surficial. |
| Extraction | Main product, co-product. |
| SUPPLY | |
| World production 2019 ¹ | Metal sponge: 210 kt
Pigment: not available
Ilmenite: 7.7 Mt ilmenite
Rutile: 0.7 Mt rutile |
| Major producing countries 2019 ¹ | Metal sponge: China (84 kt) 40%; Japan (54 kt) 26%
Pigment: Not available
Ilmenite: China (2.1 Mt) 27%; Australia (1.4 Mt) 18%
Rutile: Australia (0.2 Mt) 29%; Sierra Leone (0.12 Mt) 17% |
| World resources 2019 ¹ | Metal sponge capacity: 305 kt
Pigment capacity: 7,660 kt
Ilmenite: 800 Mt
Rutile: 55 Mt |
| Major resource holders 2019 ¹ | Metal sponge capacity: China (117 kt) 38%; Japan (68 kt) 22%
Pigment capacity: China (3,250 kt) 42%; US (1,370 kt) 18%
Ilmenite: Australia (276.3 Mt) 35%; China (230 Mt) 29%
Rutile: Australia (35.4 Mt) 64%; India (7.4 Mt) 13% |
| Australian production 2018 ² | Metal sponge: not available
Pigment: not available
Ilmenite: 1.4 Mt
Rutile: 0.2 Mt |
| Australian resources (EDR) 2018 ² | Metal sponge capacity: not available
Pigment capacity: 260 kt
Ilmenite: 276.3 Mt
Rutile: 35.4 Mt |
| Australian exports | Not available. |
| Australian potential for new resources | Discovery of new heavy mineral sand deposits and lesser potential from mafic-ultramafic orthomagmatic systems. |
| Recycling | Titanium is recycled from scrap titanium-bearing steel and alloys. |

Continued over page...

DEMAND 2019 ³	Country	Import value (US\$ million)	
Titanium ores and concentrates;	US	1,509	
titanium oxides; titanium; articles thereof, including waste and scrap	UK	865	
	Japan	652	
	Belgium 404		
	Canada	232	
SUBSTITUTION	Substitutions for high-strength a composites, intermetallics, steel resistant substitutions include all alloys. Pigment substitutions inclu kaolin.	pplications include aluminium, and superalloys. Corrosion- uminium, nickel and zirconium ude calcium carbonate, talc and	

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries 2020*. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.

TUNGSTEN (W)						
CHARACTERISTICS						
Properties	Steel-grey metal that is brittle, and has a very high melting point (3,422 °C), the lowest vapour pressure (at temperatures above 1,650 °C) and the highest tensile strength. Tungsten has the lowest coefficient of thermal expansion of any pure metal.					
Usages	Major uses of tungsten include ele construction, steel and alloys, and	ectronic applications, lighting, I mining.				
Geological occurrence	Crustal abundance is approximately 1 ppm; the major source of tungsten are wolframite and scheelite.					
Mineral system group	Granite-related and surficial.					
Extraction	Main product.					
SUPPLY						
World production 2019 ¹	85 kt					
Major producing countries 2019 ¹	China (70 kt) 82% Vietnam (4.8 kt) 6% Mongolia (1.9 kt) 2%					
World resources 2019 ¹	3,700 kt					
Major resource holders 2019 ¹	China (1,900 kt) 51% Australia (394 kt) 11% Russia (240 kt) 6%					
Australian production 2018 ²	<1 kt					
Australian resources (EDR) 2018 ²	394 kt					
Australian exports	Not available.					
Australian potential for new resources	New discoveries and redevelopme particularly in the Tasmanides Bel	ent of historic mines/districts, t of eastern Australia.				
Recycling	Recycled from scrap tungsten be	aring steel and superalloys.				
DEMAND 2019 ³	Country	Import value (US\$ million)				
Tungsten ores and concentrates;	US	287				
articles thereof, including waste	Japan	107				
and scrap.	UK	42				
	Mexico	36				
	Czech Republic 21					
SUBSTITUTION	Substitutes for tungsten carbide include molybdenum carbide, titanium carbide, ceramics, ceramic-metal composites and tool steel. Molybdenum steel can substitute for tungsten steel, and there are several substitutes for tungsten in lighting. Depleted uranium can be substituted in armaments, and lead can be used for radiation shielding.					

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries* 2020. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.

VANADIUM (V)						
CHARACTERISTICS						
Properties	Silver-grey ductile and malleable and has good resistance to corro	metal that is hard, not brittle, sion and acids.				
Usages	Vanadium is used as alloy in iron al catalysts and batteries.	Vanadium is used as alloy in iron and steel, superalloys, chemical catalysts and batteries.				
Geological occurrence	Crustal abundance is approximat vanadium is from vanadium-bear occurs as vanadinite, carnotite ar	Crustal abundance is approximately 138 ppm; the major source of vanadium is from vanadium-bearing magnetite, although it also occurs as vanadinite, carnotite and other uncommon minerals.				
Mineral system group	Mafic-ultramafic orthomagmatic	, basin-hosted and surficial.				
Extraction	Co-product.					
SUPPLY						
World production 2019 ¹	73 kt					
Major producing countries 2019 ¹	China (40 kt) 54% Russia (18 kt) 25% South Africa (9.1 kt) 12%					
World resources 2019 ¹	22,800 kt					
Major resource holders 2019 ¹	China (9,500 kt) 42% Russia (5,000 kt) 22% Australia (4,646 kt) 20%					
Australian production 2018 ²	0					
Australian resources (EDR) 2018 ²	4,646 kt					
Australian exports	0					
Australian potential for new resources	Development of known vanadium Windimurra and Balla Balla, and se Julia Creek, and discovery of new igneous provinces.	-rich magnetite deposits, e.g. ediment-hosted deposits, e.g. deposits associated with large				
Recycling	The majority of recycled vanadiur process catalysts; a small amoun bearing tool scrap metal.	m comes from spent chemical t is recycled from vanadium-				
DEMAND 2019 ³	Country	Import value (US\$ million)				
No specific data for vanadium.	Czech Republic	212				
Niobium, tantalum, vanadium ores	US	171				
and hydroxides.	Canada	58				
	Japan	40				
	China	11				
SUBSTITUTION	Manganese, molybdenum, niobium, titanium and tungsten are interchangeable with vanadium, to some degree, as alloying elements in steel. Platinum and nickel can replace vanadium compounds as catalysts.					

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries* 2020. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

 ${\tt 3. Trade \ data \ sourced \ from \ the \ United \ Nations \ Comtrade \ Database, \ http://comtrade.un.org.}$

ZIRCONIUM (Zr)					
CHARACTERISTICS					
Properties	Soft metal that is resistant to co 1,855 °C and a boiling point of 4,3	rrosion, with a melting point of 871 °C.			
Usages	Zirconium metal is used for claddi zirconium compounds are used in applications, such as moulds for m	ng nuclear reactor fuels, and a variety of high-temperature nolten metals.			
Geological occurrence	Crustal abundance is approximately 132 ppm; the major source of zirconium is zircon ($ZrSiO_4$), although there are a number of other minor to trace zirconium-bearing minerals.				
Mineral system group	Alkaline intrusion-related and surfi	cial (heavy mineral sand deposits).			
Extraction	Main product, co-product.				
SUPPLY					
World production 2019 ^{1,4}	2,000 kt zircon				
Major producing countries 2019 ^{1,4}	South Africa (550 kt zircon) 26%				
	Australia (500 kt zircon) 25%				
	US (150 kt zircon) 11%				
World resources 2019 ^{1,4}	92,500 kt zircon				
Major resource holders 2019 ^{1,4}	Australia (79,900 kt zircon) 73%				
	South Africa (9,700 kt zircon) 9%				
Australian production 2018 ²	500 kt zircon	·			
Australian resources (EDR) 2018 ²	79 900 kt zircon				
Australian exports	Not available				
Australian potential for now	Discovery of new beavy mineral se	and denosite: possible by-product			
resources	of certain rare-earth element dep	posits.			
Recycling	Most recycled from new scrap, du fabrication. Some old scrap is also	ring metal production and or recycled.			
DEMAND 2019 ³	Country	Import value (US\$ million)			
Zirconium ores and concentrates;	US	151			
articles thereof, including waste	Japan	81			
and scrap.	Canada	53			
	Belgium	31			
	UK	28			
SUBSTITUTION	Chromite and olivine can be substituted for some foundry applications. Dolomite and spinel can also substitute in high- temperature applications. Niobium, stainless steel and tantalum provide limited substitution in nuclear applications.				

1. World production and resources sourced from the United States Geological Survey, *Mineral Commodity Summaries* 2020. Figures for 2019 are estimates.

2. Australian production and resources sourced from Geoscience Australia, Australia's Identified Mineral Resources 2019.

3. Trade data sourced from the United Nations Comtrade Database, http://comtrade.un.org.

4. Zirconium oxide content (ZrO_2) has been converted to zircon $(ZrSiO_4)$ with a conversion factor of 1.49%.

ADVANCED PROJECTS

The following information provides an overview of key advanced projects in Australia that represent potential investment and offtake opportunities in rare-earth elements and other critical minerals. This is not an exhaustive list of advanced critical minerals projects, but is intended to guide readers to a range of potential opportunities. Readers interested in specific projects can contact the companies directly, or seek further information from Austrade.

Project selection

The following key advanced projects in the following section were selected by Austrade in close consultation with the geological surveys and trade and investment agencies of Australia's states and territories.

Project summaries were prepared in consultation with the companies owning the selected projects.

Key advanced projects were selected using the following criteria:

- The project has potential to produce (or continue producing) one or more of the 24 critical minerals on the Australian list.
- The project is active.
- The project has, at a minimum, a completed pre-feasibility study (PFS).

In addition:

• Operating mines were excluded from selection other than Costerfield, Groote Eylandt, Eneabba Stockpiles and Mount Weld, which were selected as examples to showcase Australia's production of antimony, rare-earth elements and manganese ore.

- Projects in construction stage were excluded from selection.
- Inactive projects were not included regardless of PFS status; and
- Smaller advanced projects with relatively low amounts of critical minerals contained in their total mineral resource were excluded from selection.

In some cases, companies did not accept Austrade's invitation to include project summaries for selected projects, so these projects have not been included.

Project status

The status assigned to Australian critical minerals projects is based on industry standard mineral project development stages as shown below.

Project status	Description
Early-stage exploration	Early-stage greenfield exploration prospects prior to reporting significant exploration results.
Exploration	Exploration-stage projects with exploration results reported but prior to establishment of a Joint Ore Reserves Committee (JORC) Mineral Resource. Exploration results would typically include anomalous soil geochemistry results and/or significant drilling intercepts. Results may include defined JORC Exploration Targets.
Advanced exploration	JORC Mineral Resources defined but no project studies completed. Commonly referred to as 'resource definition' stage.
Scoping study	Scoping study completed and JORC Mineral Resources defined.
Pre-feasibility study	Pre-feasibility study completed, JORC Mineral Resources defined and JORC Ore Reserves also typically defined.
Feasibility study	Feasibility study completed and JORC Mineral Resources and Ore Reserves defined. Also includes feasibility study updates.
Pre-construction	Feasibility study completed and key approvals in place for project development. Typical project activities include project financing, front-end engineering design and early construction activities.
Construction	Construction funded and underway onsite.
Operating	Operating mine.
Tailings	Tailing retreatment project.
Care and maintenance	Previously operated mines now on care and maintenance.

Project ranking and conversion factors

Lists of advanced projects ranked by the contained critical mineral within the total mineral resource (largest first) are provided at the start of the advanced project section for each critical mineral.

Conversion factors were applied to some minerals to enable comparisons between hard rock and mineral sands projects that include resources of titanium, zirconium or rare-earth elements (see Appendix A).

Critical mineral maps

Geoscience Australia has prepared maps for each critical mineral, illustrating the location of deposits, key advanced projects and operating mines. Project sizes on these maps correlate to the amount of contained critical mineral within the total mineral resource for each project. The red circles indicate key advanced projects that have a project summary in the Prospectus.

Antimony (Sb)

Advanced antimony projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Un	its	Contained (kt)	Page
Antimony	Costerfield	Mandalay Resources Corporation	Operating	Sb, Au	1.6	2.80	%	Sb	46	44
Antimony	Hillgrove	Red River Resources Ltd	Care and maint	Au, Sb	6.7	1.50	%	Sb	96	46
Antimony	Northcote	Territory Minerals Ltd	Care and maint	Au, Sb	4.0	0.30	%	Sb	11	_

CRITICAL MINERAL(S)	ANTIMONY VIC
PROJECT NAME	COSTERFIELD MINE
Location	The Costerfield Mine is centred on the small settlement of Costerfield in Central Victoria, 10 km north-east of Heathcote, 50 km south-east of Bendigo and 100 km north-west of Melbourne.
Company name	Mandalay Resources Corporation
Company ownership	Publicly listed TSX-listed (MND)
Project description	Mandalay acquired the Costerfield Gold-Antimony Mine in 2009 and has since operated the mine, increasing production via ongoing investment in the project. Costerfield is Australia's only antimony producer of any significance.
	Costerfield currently produces ore from two veins, Brunswick and Youle, both of which are accessed from the Augusta mine portal. The mining method employed is long-hole stoping with cemented rock fill. Ore is accessed by a primary spiral ramp. Level spacing is at 10 m centres and horizontal development is advanced in 1.8 m wide drives in both directions to the extents of the deposit. Levels are then retreated though production stopes drilled to a width of ~1.5 m. Stopes are then backfilled with cemented rock fill for stability, to reduce dilution and allow for mining above/below mined-out levels.
	Ore is trucked on the surface from the Augusta mine portal to the Brunswick plant, where it is stockpiled and blended into the crusher. The circuit includes: primary mobile crusher, primary and secondary ball mills, gravity separation, rougher, scavenger, cleaner flotation and filtering. Gravity gold concentrate is sold to refineries in Melbourne, and gold-antimony flotation concentrate is trucked to the Port of Melbourne, from which it is shipped to smelters in China.
	Mandalay's main objective is to accelerate mining of the high-grade Youle vein, which is critical to increasing production. Mining commenced on the Youle vein in August 2019. The Youle vein has markedly higher grades as well as better recoveries than the previously mined Brunswick vein and is central to Mandalay's organic growth plan. Production increases are expected at Costerfield in 2020 as production increases from the high- grade Youle vein.
	Exploration is ongoing and currently aimed at extending the Youle Indicated Resource. The Youle resource is still open, up dip, west of historical workings, along strike to the north and at depth. Regional target generation has included extensive surface mapping, drillhole database integration, soil geochemistry and evaluation of geophysical data, and has given rise to drill-ready targets. As Mandalay continues to increase momentum within the Youle expansion program, in 2019 it also undertook targeted testing at depth below Youle, to expand on Mandalay's developing understanding of gold enrichment environments. The first hole of Costerfield's deep drilling program was completed in 2019, at a drilling depth of 1700 m.
Products	Gold-antimony concentrate. Gold gravity concentrate.

Mineral inventory	Mineral resources (as at 31 December 2019):						
	Resource category	Tonnes (Mt)	Sb (%)	Au (g/t)			
	Measured	0.283	4.5	9.6			
	Indicated	0.830	2.9	9.6			
	Inferred	0.533	1.7	6.8			
	Total	1.646	2.8	8.7			
	Contained (Sb kt), (Au koz)		45.7	461			
	Ore reserves (as at 31 December 2019):						
	Reserve category	Tonnes (Mt)	Sb (%)	Au (g/t)			
	Proved	0.114	4.8	9.5			
	Probable	0.360	3.4	14.6			
	Inferred	0.533	1.7	6.8			
	Total	0.474	3.8	13.4			
	Contained (Sb kt), (Au koz)		17.8	204			
Stage of development	The Augusta mine has been operational since 2006. The underground mine is accessed by a 4.5 m wide and 4.8 m high decline mined at a gradient of 1.7 degrees. The decline provides primary access for personnel, equipment and materials to the underground workings.						
Production	Production for 2019:						
	Processed ore: 141 090 t						
	Concentrate produced: 7460 d	dry t at 62.2 g/t	Au and 51.5%	Sb			
	Au produced in gold gravity co	ncentrate: 5378	t				
	Au produced in gold-antimony	concentrate: 98	380 oz				
	Total Au produced: 15 258 oz						
	Sb produced in gold-antimony concentrate: 2,032 t						
	mandalayresources.com/wp-ontent/uploads/2020/03/MND_AIF_Mar-30_2020.pdf						
Infrastructure	All ore is processed at the Brunswick Processing Plant, 2 km from the Augusta mine. The Youle deposit is located 2.2 km north of the Augusta workings, accessed from the Augusta portal. Surface infrastructure facilities are typical of a conventional gravity circuit and flotation-style concentrator and underground mine operation of this size.						
Project development capital costs	Capital expenditures A\$17-21r	n expected in 20	020.				
Project economics	Production and cost guidance	for 2020:					
	Gold produced (oz):	32,000	-38,000				
	Antimony produced (t):	Antimony produced (t): 3000–3500					
	Cash cost per oz gold eq. produ	uced: A\$725-	\$875				
	All in cost per oz gold eg, produ	uced: A\$1.175	-1.325				
	More information: mandalayresources.com/wp-content/uploads/2020/03/ MND_AIF_Mar-30_2020.pdf						
Project funding	Not seeking investment. Marke	et listed on TSX.					
Other	mandalayresources.com/prop	erties/costerfiel	d/				

CRITICAL MINERAL(S)	ANTIMONY AND TUNGSTEN			NSW				
PROJECT NAME	HILLGROVE							
Location	23 km east of Armidale in New S	3 km east of Armidale in New South Wales, 1 hr 20 min flight from Sydney						
Company name	Red River Resources Ltd							
Company ownership	ASX-listed (RVR)	ASX-listed (RVR)						
Project description	Hillgrove is a world-class antimony-gold-tungsten project. It is one of the top-five global antimony resources (outside of China) and accounts for approximately 55% of Australia's antimony resources.							
	Hillgrove has a high-grade min 100 kt Sb and the mine has ha kt Sb, plus by-product tungste been invested at the Hillgrove	Hillgrove has a high-grade mineral resource base of ~1 moz Au and regula 100 kt Sb and the mine has had historic production of >730 koz Au, >50 kt Sb, plus by-product tungsten production. Over A\$200m in capital has been invested at the Hillgrove site since 2004.						
	The Hillgrove underground mine, 250 ktpa million and site infrastruct are currently under active care and maintenance. The mine is product ready with extensive modern underground development in place.							
	The Hillgrove deposit has over 200 known antimony-gold-tungsten occurrences of which only 18 have had significant mining activity. All mineral resources are open at depth and/or strike.							
	Very little modern exploration has been undertaken and there is great potential to increase the existing resources and for further discoveries.							
Expected products	The Hillgrove Project is expect	ed to produce th	e following pro	oducts:				
	• antimony-gold concentrate (52-57% Sb, 12-22	2 g/t Au)					
	• gold concentrate (45 g/t Au,	8% Sb, 7% As)						
	• gold doré (bullion).							
	In addition, there is potential f bullion from concentrates on s	or production of site by utilising th	antimony meta ne existing plan	al and gold t.				
Mineral inventory	Hillgrove's JORC 2012 resource Brackin's Spur, Clark's Gully an	es consist of fou Id Syndicate.	r deposits: Sun	light,				
	JORC 2012-compliant Mineral	Resources (as at	2019):					
	Resource category	Tonnes (Mt)	Au (g/t)	Sb (%)				
	Measured	0.7	5.8	2.6				
	Indicated	1.1	4.9	1.5				
	Inferred	1.0	5.0	1.1				
	Total	2.8	5.1	1.7				
	Contained (Au koz, Sb kt)		463	46				
	The JORC 2004 resources will These resources consist of 12 Blacklode, Elanora, Garibaldi, C	progressively be deposits, of whic Cox's Lode and Fr	e updated to JC ch the main one reehold.	PRC 2012. es are:				

Mineral inventory	JORC 2004 compliant Mineral Resources (as at 2019):						
	Resource category	Tonnes (Mt)	Au (g/t)	Sb (%)			
	Measured	0.7	6.1	1.4			
	Indicated	2.0	4.7	1.1			
	Inferred	1.2	3.9	1.5			
	Total	3.9	4.7	1.3			
	Contained (Au koz, Sb kt)		597	50			
Stage of development	Red River Resources is plannin	g a staged resta	rt process for	Hillgrove.			
	Stage 1 of the project will resta crushing, grinding, gravity sepa produce a gold doré.	art on the Bakers aration, flotatior	s Creek Gold D n and leach circ	ump using cuits to			
	Stage 2 plans include comment the processing plant to produc which will be transported by ro	cement of under ce antimony-golo ad to the Port o	rground mining d and gold cond f Brisbane for d	and utilising centrates, export.			
	Additional processing stages Red River is investigating include to process the antimony-gold and gold concentrates to produce an metal (>99% Sb) and gold doré (bullion) onsite, utilising the existi antimony leach/EW circuit, furnaces and pressure oxidation circ						
Expected production	Red River has not yet publicly disclosed its Hillgrove Project production forecasts.						
Infrastructure	Existing 250 ktpa processing plant, which consists of a crusher, by flotation cells, thickeners and filters, plus an antimony alkali leach electrowinning circuit, furnaces, gold cyanide leach circuit, pressu oxidation circuit (POX) and a gold room.						
	Offices, warehouses, assay lab	and maintenand	ce facilities.				
	Extensive modern UG develop	ment – productio	on ready.				
	UG mining fleet and surface vehicle fleet.						
	Lined tailing storage facility with approximately two years capacity.						
	Residential workforce (Armidale).						
	Grid power (66 kV) onsite.						
Project development	Stage 1 restart capital costs e	stimated to be le	ess than A\$5m	•			
capital costs	Red River is in the process of e	stimating Stage	2 restart capi	tal costs.			
Project economics	Red River has not yet publicly o Project.	disclosed econor	nics for its Hillo	grove			
Project funding	Red River intends to fund Stage	e 1 restart capita	l cost from inte	ernal sources.			
	Welcomes discussions from th investment to take the concer	ird parties regar ntrate to antimo	ding offtake o ny metal and g	r additional old doré.			
Other	Red River website: redriverres	ources.com.au					
	Hillgrove acquisition presentat centre/corporate-presentation	ion: redriverresons.html	ources.com.au,	/investor-			
	Hillgrove site video: redriverres	sources.com.au/	gallery/videos.	.html			

Bismuth (Bi)

No advanced bismuth projects in Australia.

Chromium (Cr)

Advanced chromium projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Un	its	Contained (kt)	Page
Chromium	Coobina	Mineral Resources Ltd	Care and maint	Cr	1.5	29.40	%	Cr	441	-
Chromium	Range Well	EV Metals	PFS	Ni, Cr, Co	385.3	0.78	%	Cr	3,005	-

Cobalt (Co)

Advanced cobalt projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Ur	its	Contained (kt)	Page
Cobalt	Savannah	Panoramic Resources Ltd	Operating	Ni, Cu, Co	13	0.11	%	Co	14	_
Cobalt	Nova- Bollinger	IGO Ltd	Operating	Ni, Cu, Co	11.6	0.07	%	Co	8	_
Cobalt	Barbara	ASX:SOL	Operating	Cu, Au	4.8	0.03	%	Co	1	-
Cobalt	Capricorn Copper	Capricorn Copper Holdings	Operating	Cu					NA	-
Cobalt	Ernest Henry	Glencore Plc	Operating	Cu, Au					NA	-
Cobalt	Sunrise	Clean TeQ Holdings Ltd	Pre-const	Ni, Co, Sc	183.3	0.09	%	Co	162	52
Cobalt	Wingellina	Metals X Ltd	FS	Ni, Co	215.8	0.07	%	Co	151	-
Cobalt	SCONI	Australian Mines Ltd	FS	Ni, Co	75.7	0.08	%	Co	57	54
Cobalt	Gladstone	Gladstone Pacific Nickel Ltd	FS	Ni, Co	70.9	0.06	%	Co	43	-
Cobalt	Mount Oxide	Zhongjin Lingnan Mining	Care and maint	Cu, Ag	25.1	0.08	%	Co	21	-
Cobalt	Rocklands Group	CuDeco Ltd (in liquidation)	Care and maint	Cu, Au	56.7	0.03	%	Co	17	_
Cobalt	White Range	Young Australian Mines Ltd	FS	Cu, Au	29.1	0.04	%	Co	11	-
Cobalt	Avebury	Allegiance Mining Pty Ltd	Care and maint	Ni, Co	29.3	0.02	%	Co	7	-
Cobalt	Range Well	EV Metals	PFS	Ni, Cr, Co	385.3	0.04	%	Co	154	-
Cobalt	Goongarrie	Ardea Resources Ltd	PFS	Ni, Co	215.6	0.06	%	Co	131	56
Cobalt	Broken Hill Cobalt	Cobalt Blue Holdings Ltd	PFS	Co (S, Fe)	111	0.07	%	Co	79	59
Cobalt	NiWest	GME Resources Ltd	PFS	Ni, Co	85.2	0.07	%	Со	55	62
Cobalt	Mt Thirsty	Conico; Barra Resources	PFS	Co, Ni	26.8	0.12	%	Co	32	64
Cobalt	Kalkaroo	Havilah Resources Ltd	PFS	Cu, Au, Co	193.3	0.01	%	Co	23	66

CRITICAL MINERAL(S)	COBALT, SCANDIUM NSW						
PROJECT NAME	CLEAN TEQ SUNRISE						
Location	370 km west of Sydney in New South Wales; within the Lachlan Shire near the village of Fifield.						
Company name	Clean TeQ Holdings Limited						
Company ownership	ASX/TSX listed (CLQ)						
	Project held by wholly owned subsidiary Clean TeQ Sunrise Pty Ltd.						
Project description	The Clean TeQ Sunrise Batter a fully integrated supplier of h sulphate for the electric vehic world's largest producers of s	y Materials C high-purity ba cle (EV) suppl candium.	complex has attery-grac y chain, as	been desig le nickel and well as one o	ned as l cobalt of the		
	With over A\$200m invested t all key permits secured, a 404 to be in the lowest quartile of	o date, Sunri - year mine lif the industry	se is develo e and opera	pment-read ating costs	dy, with forecast		
	A project execution plan (PEP) is due for completion in Q2 2020, updating the 2018 feasibility study.						
	The project development will consist of a shallow open-cut mine, hydrometallurgical processing plant (pressure acid leach followed by Clean TeQ's proprietary ion exchange technology, Clean-iX®, to separate nickel, cobalt and scandium) and associated infrastructure.						
Expected products Battery-grade nickel sulphate (NiSO $_{4}$ ·6H $_{2}$ O).							
	Battery-grade cobalt sulphate (CoSO $_4$ ·7H $_2$ O).						
	Scandium oxide (Sc ₂ O ₃).						
	Ammonium sulphate $((NH_a)_2SO_a)$.						
Mineral inventory	Proved and Probable Ore Reserves (JORC 2012) are sufficient to support approximately 40 years of supply.						
	Mineral resource estimate (as at 9 October 2017):						
	Resource category	Tonnes	Ni (%)	Co (%)	Sc (ppm)		
	Measured	68.8	0.63	0.10	62		
	Indicated	93.9	0.47	0.08	86		
	Inferred	20.6	0.23	0.09	283		
	Total	183.3	0.50	0.09	99		
	Contained (kt)		921	162	18		
	0% cobalt cut-off						
	Ore reserves (as at 22 June 2018):						
	Reserve category	Tonnes	Ni	Со	Sc		
		(Mt)	(%)	(%)	(ppm)		
	Proved	65.5	0.65	0.10	48		
	Probable	81.9	0.49	0.08	57		
	Total	147.4	0.56	0.09	53		
	Contained (kt)		825	133	8		

Stage of development	Sunrise has obtained all key approvals:				
	 NSW development consent, an approved environmental impact statement and heritage clearances 				
	• the mining lease has been granted (ML1770)				
	• water supply obtained via	a +3.2 GLpa ground water allocation			
	• excellent regional infrast	ructure including road, rail and power			
	 initial binding offtake contract secured with established battery precursor/cathode manufacturer for approximately 20% of forecast production in years 1–5, with strong demand for the balance. 				
	With front-end engineerin and schedule delivered, Cl partnerships to fund cons	g complete and a detailed capital estimate ean TeQ is focused on identifying strategic truction of the project.			
Expected production	Expected annual producti	on (first decade average):			
	• Ore mined and processed	l: 2.5 Mtpa			
	• Nickel sulphate:	89,270 tpa (19,620 tpa contained Ni metal)			
	• Cobalt sulphate:	21,260 tpa (4,420 tpa contained Co metal)			
	• Scandium oxide:	80 tpa (expandable)			
	• Ammonium sulphate:	82,000 tpa			
Infrastructure	Sunrise is regulated by development consent DA 374 11 00 issued by the NSW Government under Part 4 of the EP&A Act in 2001. The area is well serviced by road and rail, a highly skilled workforce and power supply. A 70 km water pipeline will connect the project site to a fully licensed bore field. Sunrise is adjacent to one of Australia's largest solar developments and a possible source of 100% renewable power.				
Project development capital costs	The feasibility study provided a pre-production capital cost estimate of approximately US\$1.5 bn (including contingency). This estimate will be updated on delivery of the PEP in Q2 2020.				
Project economics	The feasibility study projected a post-tax net present value (NPV _{8%}) of US\$1.392 bn and post-tax internal rate of return (IRR) of 19.1%. The definitive feasibility study economics will be updated on delivery of the PEP in Q2 2020.				
Project funding	Clean TeQ is targeting at least 50% of Sunrise's construction capital to be provided under a standard, non-recourse project debt facility. Four leading international banks – Société Générale, National Australia Bank, Natixis and ICBC – have been appointed as Mandated Lead Arrangers for the debt funding. In June 2019, Clean TeQ announced that it had appointed a division of Macquarie Bank to run a partnering process for the Sunrise Project, whereby parties would be offered an investment in the project in conjunction with long-term offtake arrangements. The partnering process remains ongoing.				
Other	Company website: cleante	q.com			
	Investor information: clea	nteq.com/investors/			

CRITICAL MINERAL(S)	COBALT, SCANDIUM				QLD	
PROJECT NAME	THE SCONI PROJECT (SCONI)					
Location	Located in North Queensland, within easy driving distance to the nearby towns of Greenvale, Charters Towers and Ingham, and only 250 km from the Port of Townsville (via existing sealed roads).					
Company name	Australian Mines Limited					
Company ownership	Australian ASX: AUZ					
	US OTCQB: AMSLF					
	Frankfurt Stock Exchange: MJ	н				
Project description	Sconi is a Tier-1 cobalt, nickel a support an open-pit mine life o	h ore rese	erves that			
	Once in production, Sconi will nickel sulphate, and high-purit	produce batt cy scandium o	ery-grade xide.	cobalt su	Ilphate and	
	According to an independent n expected to be one of the lowe the world.	narket study est-cost coba	by CRU Int lt-producir	ernationa ng nickel p	II, Sconi is projects in	
Expected products	Sconi uses a latest-generation pressure acid leach + solvent extraction and final product precipitation/crystallisation processing plant for processing nickel and cobalt ore through to battery-grade nickel sulphate crystals (NiSO ₄ .6H ₂ O) and cobalt sulphate crystals (CoSO ₄ .7H ₂ O) with scandium recovery and production of high-purity scandium oxide (Sc ₂ O ₂).					
Mineral inventory	Mineral resources (as at 14 February 2019):					
	Resource category	Tonnes (Mt)	1 ()	Ni %)	Co (%)	
	Measured	8.3	0	.75	0.09	
	Indicated	49.2	0.	60	0.08	
	Inferred	18.2	0.	54	0.05	
	Total	75.7	0.	60	0.08	
	Ore reserves (as at 13 June 20 Reserve category	19): Tonnes	Ni	Co	Sc	
		(Mt)	(%)	(%)	(ppm)	
	Proved	8.1	0.72	0.09	44	
	Probable	49.2	0.55	0.08	33	
	Total	57.3	0.58	0.08	35	
	Contained (kt)		332	46	2.0	
Stage of development	A feasability study was comple 2019 to reflect updated miner Australian Mines operates a de has been producing cobalt sul past two years.	eted in Nover ral resource. emonstration phate and nic	nber 2018 n-scale pro	and revis ocessing p te throug	sed in June plant, which ghout the	

Stage of development	In March 2020, a series of production runs were completed at its Perth- based pilot-plant site. These production runs will supply samples of battery-grade cobalt sulphate and nickel sulphate for testing by and to facilitate discussions with potential offtake and financing partners for Sconi. The production runs are also being used to produce high-purity scandium oxide for supply to potential research and development partners.				
	In January 2019, Sconi was declared a 'prescribed project' by the Queensland Government. This support helps with streamlining Sconi's progression through the final stages of regulatory approvals and facilitates the fast-tracking of its future development.				
	Australian Mines also holds an Indigenou cultural heritage management plan with Landowners for mining at Greenvale wh	us land use agreement and 1 the Gugu Badhan Traditional ere Sconi is located.			
Expected production	Expected annual production (life of min	e average):			
	• Strip ratio over life of mine (waste:ore)	: 0.87:1			
	• Ore mined and processed:	2.0 Mtpa			
	• Nickel sulphate production:	46,800 tpa			
	• Cobalt sulphate production:	7,000 tpa			
	• Scandium oxide production:	48 tpa			
Infrastructure	Sconi is well supported by existing infrastructure, including an established bulk commodities port at Townsville and an existing road network capable of facilitating road haulage of material between Sconi and Port of Townsville. Australian Mines has committed to invest over A\$100m to upgrade this shared infrastructure as part of developing Sconi.				
Project development	Total capital costs of US\$974m, being:				
capital costs	• US\$730m – processing-plant costs				
	• US\$103m – non-process costs				
	• US\$110m – contingencies				
Project economics	Over its expected minimum mine life of 30 years, Sconi is expected to generate at least A\$13.27bn in revenues and an estimated A\$5bn in fr cash flow. Key financial highlights include:				
	• Average annual revenue:	A\$730m			
	• Average annual EBITDA:	A\$420m			
	• Project payback period (post-tax):	5.2 years			
	• Pre-tax IRR:	20%			
	• Post-tax NPV _{8%} :	A\$1,167m			
Project funding	Australian Mines' primary focus in 2020 is securing offtake and financing agreements for Sconi. The company is progressing negotiations with potential offtake and financing partners, supported by current production runs, which are delivering battery-grade cobalt sulphate and nickel sulphate samples for testing.				
Other	Company website: www.australianmine	s.com.au			
	Sconi Project: australianmines.com.au/r	esource-supply			
	Contact: australianmines.com.au/conta	ct			

CRITICAL MINERAL(S)	COBALT WA
PROJECT NAME	GOONGARRIE NICKEL COBALT PROJECT (GOONGARRIE, GNCP)
Location	80 km north of Kalgoorlie on the main Goldfields Highway, in Western Australia.
Company name	Ardea Resources Ltd
Company ownership	ASX-listed (ARL) – 100%
Project description	The Goongarrie Nickel Cobalt Project (Goongarrie or GNCP) is among the developed world's premier nickel-cobalt projects, with world-class supporting infrastructure in the well-established Kalgoorlie mining district and an environmentally benign arid setting.
	Conventional open-pit mine with low strip ratio and in excess of 25-year mine life (2.25 Mtpa expansion study case) feeding high-quality goethite dominated cobalt-nickel ore into a fifth-generation high-pressure acid leach (HPAL) hydrometallurgical process plant.
	The GNCP resource of 215 Mt at 0.06% Co and 0.71% Ni is already one of the world's largest Ni-Co resources and is expected to support multi- decades of additional mine life beyond the artificial 25-year mine life chosen for the expansion study.
	GNCP is part of Ardea's nearby Kalgoorlie Nickel Project (KNP), which is the largest cobalt-nickel project in the developed world with total resources of 773 Mt at 0.05% Co and 0.70% Ni (405 kt contained Co and 5,458 kt contained Ni). The KNP provides optionality to develop multiple nearby processing hubs and substantially expand GNCP production and/ or extend mine life.
	Studies are also underway to add scandium, manganese and rare-earth elements to the KNP resources and potentially uncover these metals.
	The GNCP ore body has formed as a conventional nickel laterite through weathering of the ultramafic basement, but with significantly higher cobalt than usually seen in laterites, resulting in the following:
	 intense leaching and upgrading of cobalt, nickel and manganese (the building blocks of lithium-ion batteries)
	 crustal-scale faulting intersecting the deposit, resulting in intense deformation and weathering to depths of >120 m
	• alkaline intrusions containing rare-earth elements and scandium abutting the ore zone have also been enriched by weathering resulting in elevated concentrations of scandium and the rare-earth minerals cerium, neodymium and praseodymium in selected areas
	• cobalt, nickel, manganese, scandium, cerium, neodymium and praseodymium all go into solution in the HPAL process, and potential exists to selectively recover them through ion exchange at little additional cost, which will be further studied by Ardea.
Expected products	Cobalt sulphate (CoSO ₄ .7H ₂ O) – battery grade, high purity.
	Nickel sulphate (NiSO ₄ .6H ₂ O) – battery grade, high purity.
	Potential exists to produce other high-purity oxides and sulphates as required for the battery and technology industries, including scandium, rare-earth elements, high-purity alumina and manganese. There is also potential for gold from underlying/adjacent primary gold mineralisation.

Mineral inventory	GNCP mineral resources (as at 14 March 2018) Ardea 100%:						
	Resource category	Tonnes (Mt)	Co (%)	Ni (%)			
	Measured	10.3	0.10	0.98			
	Indicated	105.0	0.07	0.72			
	Inferred	100.3	0.05	0.67			
	Total	215.6	0.06	0.71			
	Contained (kt)		131	1,522			
	GNCP ore reserves (as at 28 Ma	arch 2018) Arde	a 100%:				
	Reserve category	Tonnes (Mt)	Co (%)	Ni (%)			
	Proved	9.0	0.10	0.96			
	Probable	31.2	0.09	0.78			
	Total	40.1	0.09	0.82			
	Contained (kt)		36	329			
Stage of development	Pre-feasibility study completed in March 2018 and expansion study completed in July 2018.						
	Feasibility study underway. All Goongarrie resources and reserves are on granted mining leases with a native title agreement in place.						
	Nearby borefields with quality s	suited to revers	e osmosis.				
	Environmental reports finalised and ready for statutory approvals submission once the scale of operation and final products settled.						
Expected production	Expected annual production (p	ost ramp-up av	verage):				
1 I.	• Ore mined and processed:	2.25 Mtpa					
	• Cobalt sulphate:	10,000 tpa					
	• Nickel sulphate:	81,000 tpa					
Infrastructure	Kalgoorlie in Western Australia established mining district. Loc north of Kalgoorlie, with railway	offers world-cl cated on the Go y, powerlines an	ass infrastruct Idfields Highwa d gas pipeline i	cure in an ay 80 km nearby.			
Project development capital costs	US\$918m pre-production start for production of battery sulph	-up capital cost ate crystals.	; 2.25 Mtpa ex	pansion case			
	Capital expenditure can be red sulphide product only.	uced by approxin	nately 20% for a	a mixed			
Project economics	Expansion case:	2.25 Mtpa					
	Unleveraged post-tax $NPV_{_{8\%}}$:	US\$1.805bn					
	Post-tax IRR:	27%					
	Payback:	5.1 years					
	NPV/capital expenditure ratio:	1.97:1					
	Mine life:	25 years; pote	ntial to extend	l from GNCP			

and KNP resources

Project funding	Ardea is undertaking a strategic partner process coordinated by KPMG to identify a development partner within the LIB and/or EV sector, with 100% offtake available. Virtual data room available for potential partners to review the A\$50m of project data.
Other	ardearesources.com.au
	Andrew Penkethman, Managing Director and Chief Executive Officer
	Phone: +61 8 6244 5136
	Email: apenkethman@ardearesources.com.au

CRITICAL MINERAL(S)	COBALT				NSW			
PROJECT NAME	BROKEN HILL COBALT PROJECT							
Location	Located 23 km west of Broken Hill, New South Wales.							
Company name	Cobalt Blue Holdings Ltd							
Company ownership	ASX-listed (COB)							
	Broken Hill Cobalt Project	(100% COB)						
	Major shareholders:							
	• management/insiders (8	3.0%)						
	• Broken Hill Prospecting ((5.6%)						
	• LG International (5.0%).							
Project description	The Broken Hill Cobalt Pro mining operation, downst cobalt sulphate (suitable a sulphur.	oject includes ream ore pro as a battery c	the develop cessing and a athode prec	ment of an a refinery to ursor) and e	open-cut o produce elemental			
	It is expected that the life span of the mine and processing operations will be at least 20 years.							
	Cobalt Blue has confirmed that the cobalt is locked inside the pyrite mineral. The company has subsequently developed and patented a tailored metallurgical process with the following characteristics:							
	• high cobalt recoveries							
	• no sulphur dioxide emissions							
	 produces high-quality cobalt sulphate and high- relatively low capital and operational costs comporcessing methods. 				gh-purity elemental sulphur			
					pared to other			
Expected products	$CoSO_4$.7H ₂ O (cobalt sulphate heptahydrate).							
	S (elemental sulphur).							
Mineral inventory	Mineral resources (as at J	uly 2020):						
	Resource category	Tonnes (M+)	Co (nnm)	S (%)	CoEq (ppm)			
	Measured	18	(ppii) 928	9,9	(ppiii) 1094			
	Indicated	64	619	6.7	731			
	Inferred	40	604	6.9	720			
	Total	123	660	7.3	792			
	Contained (kt)		81.4					
	Ore reserve and mining ta	ırget (as at Ju	ıly 2020):					
	Resource category	Tonnes (Mt)	Co (ppm)	S (%)	Co mined (kt)			
	Probable	71.8	710	7.4				
	Production Target	97.7	690	7.4	67			

Stage of development	Pre-feasibility study (+/- 20-25%) completed in July 2018 and a project update in July 2020. Cobalt Blue undertaking new feasibility study (+/- 10–15%) in 2020 for the Broken Hill Project. The main elements include:
	• Metallurgical pilot and demonstration plant processing approximately 3,000 t ore to produce several hundred kilograms of CoSO ₄ .7H ₂ O and elemental S for user acceptance testing and FS engineering design criteria for plant cost estimation
	• Project leader in \$10m Co-operative Research Centre – project (financially supported by Australian Government). This involves research with UNSW, ANSTO, and ANERGY to optimise calcine, leach and recovery stages at the demonstration plant
	 participation in the Future Battery Industries CRC (FBICRC), to help develop NMC batteries using raw materials from Australian producers. The FBICRC includes A\$25m support from the Australian Government. Contributions from sixty partners has resulted in a total budget of \$130 million over five years
	• An ore reserve update
	• A NSW Significant Development Approval application
	• Waste, power and water optimisation studies
	Cobalt Blue aims to complete the feasibility study by the end of 2002/23.
Expected production	Average annual production post ramp-up of:
	• Ore mined and processed ~5-6.5 Mtpa
	• Co (metal in sulphate) ~3,500 tpa
	• S (elemental sulphur) ~300,000 tpa
Infrastructure	The Broken Hill Cobalt Project is located 23 km to the west of Broken Hill, an established mining community. The project site is located adjacent to the Barrier Highway and a rail line that extends to Port Adelaide for domestic/international shipping. Power and water supplies are available in Broken Hill for connection to site.
Project development capital costs	Project Update 2020: Pre-production capex of A\$560m (includes A\$70m contingencies)
Project economics	Project update 2020: based on production target (including nickel)
	NPV (pre-tax) at 7.5% discount rate = A\$861M, pre-tax IRR = 22.8%
	NPV (post-tax) at 7.5% discount rate = A\$554M, post-tax IRR = 18.9%
	Project payback (simple) = 4.5 years
	C1 cash cost (Co US\$/lb) = US\$10.34/lb
	All in sustaining costs = US\$12.13/lb
	Assumptions: LT Co US\$27.50/lb, LT S US\$145/t, FX 0.7
Project funding	Cobalt Blue is seeking potential partners to take equity, offtake, or debt interest in the project. Advanced discussions are expected with identified parties as the demonstration plant comes into operation and the feasibility study nears completion in 2021–22.
Other	cobaltblueholdings.com
	PFS announcement (4 July 2018)
	Business update (31 March 2020)
	1H 2020 company presentation (4 May 2020)

CRITICAL MINERAL(S)	COBALT WA					
PROJECT NAME	NIWEST					
Location	The project area is located approximately 250 km north of Kalgoorlie in the North Eastern Goldfields of Western Australia.					
Company name	GME Resources Limited					
Company ownership	ASX-listed (GME) and owns 10	00% of the NiWes	st Project.			
Project description	Eight shallow nickel-cobalt laterite deposits, each up to several kilometres long and 750 m wide, with typical thicknesses of 5–30 m. Conventional open-pit mining at a low projected strip ratio of 2.0:1. Heap leach processing followed by highly efficient direct solvent extraction. Initial 27-year operating life at a nameplate processing capacity of 2.4 Mtpa, based on mining of three (Mt Kilkenny, Eucalyptus and Hepi) deposits only. Total life-of-mine production of 456 kt nickel (in nickel sulphate) and 31.4 kt cobalt (in cobalt sulphate). Average annual production of 19.2 kt nickel and 1.4 kt cobalt over the first 15 years.					
Expected products	Nickel sulphate hexahydrate (I	NiSO ₄ ·6H ₂ O).				
	Cobalt sulphate heptahydrate	e (CoSO ₄ ·7H ₂ O).				
	The targeted content of nickel and cobalt metal in the sulp is extremely high purity at approximately 99.95% and >99.9 respectively.					
Mineral inventory	inventory Mineral resources at 0.8% nickel cut-off grade (as at 14 June 2020):					
	Resource category	Tonnes (Mt)	Nickel (%)	Cobalt (%)		
	Measured	15.2	1.08	0.064		
	Indicated	50.4	1.04	0.068		
	Inferred	19.5	0.95	0.057		
	Total	85.2	1.03	0.065		
	Contained (kt)		878	55.4		
	Ore reserves at 0.5% nickel cut-off grade (as at 14 June 2020):					
	Reserve category	Tonnes (Mt)	Nickel (%)	Cobalt (%)		
	Proved	0.0	0.00	0.00		
	Probable	64.9	0.91	0.06		
	Total	64.9	0.91	0.06		
	Contained (kt)		592	38		
Stage of development Pre-feasibility study completed in August 2018. The study presents a standalone development pathway for the NiWest Project that incorporates detailed consideration of:						
	NiWest Project by GME over a five-year period					
	• a review of the various studies conducted by other nickel-cobalt laterite industry participants and the history of underperforming/failed high- pressure acid leach laterite nickel developments over the past 20 years					

Stage of development	• a review of the nickel and cobalt supply/demand outlooks, including the emerging battery raw materials demand from the EV market.				
	An environmental baseline study at the proposed Mt Kilkenny mining and processing area, Hepi mining area, Waite Kauri deposit and a haul road alignment was completed in March 2019. The results were consistent with previous surveys and did not identify any material issues of concern.				
Expected production	Expected annual production over the first 15 years:				
	• Ore mined: 3.6 Mtpa				
	• Ore processed: 2.4 Mtpa				
	• Nickel sulphate: 86 ktpa				
	• Cobalt sulphate: 6.7 ktpa				
	• Contained nickel: 19.2 ktpa				
	• Contained cobalt: 1.4 ktpa				
Infrastructure	The project area has a 20-year history of nickel and cobalt mining operations at the nearby Murrin Murrin operation. The regional rail infrastructure extends to the Malcolm siding near Leonora. An existing commercial airstrip is located at Leonora. Sulphuric acid demand requirements are planned to be met by a sulphur-burning acid plant. All requisite site power and steam demand is expected to be met by the acid plant operation. Major imported consumables and final saleable products are expected to be shipped via the Esperance Port facility and trucked to and from site via existing roads.				
Project development capital costs	Pre-production capital expenditure estimate of A\$966m, representing a globally attractive pre-production capital intensity of sub-US\$20 per pound of average annual nickel production. Forecast project construction period is 24 months from final investment decision. The forecast commissioning and plant ramp-up phase extends for approximately 20 months from completion of the project construction.				
Project economics	Key results from the August 2018 pre-feasibility study* include:				
	• ungeared post-tax NPV _{8%} of A\$791m and internal rate of return of 16.2% (equivalent pre-tax values of A\$1,390m and 21.2%, respectively). Payback period (pre-tax) of 4.4 years.				
	• project free cash flow (post all capital expenditure and tax) of A\$3,342m.				
	• average life-of-mine cash unit operating cost (post royalties and cobalt credits) of US\$3.24/lb contained nickel. All-in sustaining cost, inclusive of all sustaining capital expenditure, of US\$3.68/lb contained nickel.				
	*Assumptions include life-of-mine price estimates of US\$8/lb nickel (includes US\$0.75/lb sulphate premium) and US\$25/lb cobalt (zero sulphate premium). AUD:USD assumption of 0.75.				
Project funding	The company welcomes discussion regarding joint venture participation in the project, and financing of the project construction or offtake. Of the forecast nickel and cobalt sulphate production from the NiWest Project, 100% remains uncommitted.				
Other	gmeresources.com.au				

CRITICAL MINERAL(S)	COBALT WA						
PROJECT NAME	MT THIRSTY						
Location	Norseman, Western Australia.						
Company name	Mt Thirsty Joint Venture						
Company ownership	Conico Ltd (ASX:CNJ, 50%), Barra Resources Ltd (ASX:BAR, 50%)						
Project description	The Mt Thirsty Cobalt-Nickel Project is an advanced, high-grade, low capital expenditure, sustainable source of cobalt and nickel located in the mining jurisdiction of Western Australia.						
	Mining will be by conventional open-pit over a 12-year initial mine life.						
	Extensive test work has demonstrated that the metal can be leached at atmospheric pressure using sulphur dioxide as the main reagent, which is a key competitive advantage to higher capital expenditure, high- pressure acid leaching projects. An onsite processing plant will produce an intermediary mixed sulphide product (MSP), which will be dried, loaded into bulka bags and trucked in shipping containers to Australian end users or exported via anyone to several container ports in Western Australia.						
Expected products	An MSP has been strategically selected, because not only does it suit the metallurgical process, but it is also targeted to attract interest from global firms looking to secure a sustainable source of cobalt for further downstream refining for metal, chemical and battery markets. Product offtake is therefore reserved and 100% available for the future mine development partner. The MSP is especially rich in cobalt at 43% of the payable metals by mass, and due to the higher price that cobalt attracts over nickel, cobalt accounts for 71% of the projected project revenue. There is also the potential to produce a manganese by-product, which is not included in the pre-feasibility study financials.						
Mineral inventory	Mineral resources (as at 30 June 2020):						
	Resource category	Dry tonnes (Mt)	Cobalt (%)	Nickel (%)	Manganese (ppm)		
	Indicated (main)	22.8	0.121	0.53	0.79		
	Inferred (main)	2.5	0.103	0.45	0.66		
	Inferred (north) 1.5		0.092	0.55	0.48		
	Total 26.9 0		0.117	0.52	0.76		
	Contained (kt) 31.5 140				204		
Ore reserves (as at 30 June 2020):							
	Reserve category	Dry tonnes (Mt)	Cobalt (%)	Nickel (%)	Manganese (ppm)		
	Probable	18.8	0.126	0.54	0.80		
	Contained (kt)		23.7	102	150		

Stage of development	• Pre-feasibility study completed in March 2020.					
	Baseline biological surveys completed.					
	• Native title negotiations with the Ngadju Traditional Owners are at an advanced stage.					
	• The next stage of engineering development will be determined by the future development/offtake partner for the project.					
Expected production	Expected annual production (LOM average dry tonnes):					
	• Ore mined and processed: 1.8 Mtpa					
	• Mine life: 12 years					
	• Concentrate: 5-10 ktpa					
	• Contained cobalt: 1.6 ktpa					
	Contained nickel: 2.1 ktpa					
	Metal production is significantly higher in the early years.					
Infrastructure	The project benefits from its location only 16 km north-west from the mining town of Norseman and only 4 km from Highway 1, an infrastructure corridor with road, rail, gas, power, water and fibre-optic cables. The export quantities will be 1–2 shipping containers of high-value product per day, which can be easily handled by any of several container ports.					
Project development	• Direct capital expenditure: A\$277m					
J 1						
capital costs	• Indirect capital expenditure: A\$31m					
capital costs	 Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m 					
capital costs	 Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m Contingency (10%): A\$33m 					
capital costs	 Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m Contingency (10%): A\$33m Owner's costs (4%): A\$13m 					
capital costs	 Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m Contingency (10%): A\$33m Owner's costs (4%): A\$13m Total capital expenditure: A\$371m 					
capital costs Project economics	 Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m Contingency (10%): A\$33m Owner's costs (4%): A\$13m Total capital expenditure: A\$371m All-in sustaining cost (AISC): US\$35,400/t cobalt metal price. 					
capital costs Project economics	 Indirect capital expenditure: A\$31m Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m Contingency (10%): A\$33m Owner's costs (4%): A\$13m Total capital expenditure: A\$371m All-in sustaining cost (AISC): US\$35,400/t cobalt metal price. NPV (pre-tax 8%): A\$44m 					
Project economics	 Indirect capital expenditure: A\$31m Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m Contingency (10%): A\$33m Owner's costs (4%): A\$13m Total capital expenditure: A\$371m All-in sustaining cost (AISC): US\$35,400/t cobalt metal price. NPV (pre-tax 8%): A\$44m Material assumptions: Forex 0.67, Co Price US\$61,000/t, Ni Price US\$17,850/t, Co payability 80%, Ni payability 85%. Post-tax NPV A\$25.7m. Refer to ASX announcement (see below) for full details. AISC is before amortisation and after nickel co-product credits. 					
Project funding	 Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m Contingency (10%): A\$33m Owner's costs (4%): A\$13m Total capital expenditure: A\$371m All-in sustaining cost (AISC): US\$35,400/t cobalt metal price. NPV (pre-tax 8%): A\$44m Material assumptions: Forex 0.67, Co Price US\$61,000/t, Ni Price US\$17,850/t, Co payability 80%, Ni payability 85%. Post-tax NPV A\$25.7m. Refer to ASX announcement (see below) for full details. AISC is before amortisation and after nickel co-product credits. The project is available for investment from downstream partners, either as an outright sale or as a development farm-in in exchange for the 100% offtake rights. 					
Capital costs Project economics Project funding Other	 Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m Contingency (10%): A\$33m Owner's costs (4%): A\$13m Total capital expenditure: A\$371m All-in sustaining cost (AISC): US\$35,400/t cobalt metal price. NPV (pre-tax 8%): A\$44m Material assumptions: Forex 0.67, Co Price US\$61,000/t, Ni Price US\$17,850/t, Co payability 80%, Ni payability 85%. Post-tax NPV A\$25.7m. Refer to ASX announcement (see below) for full details. AISC is before amortisation and after nickel co-product credits. The project is available for investment from downstream partners, either as an outright sale or as a development farm-in in exchange for the 100% offtake rights. barraresources.com.au 					
capital costs Project economics Project funding Other	 Indirect capital expenditure: A\$31m Growth allowance (9%): A\$28m Contingency (10%): A\$33m Owner's costs (4%): A\$13m Total capital expenditure: A\$371m All-in sustaining cost (AISC): US\$35,400/t cobalt metal price. NPV (pre-tax 8%): A\$44m Material assumptions: Forex 0.67, Co Price US\$61,000/t, Ni Price US\$17,850/t, Co payability 80%, Ni payability 85%. Post-tax NPV A\$25.7m. Refer to ASX announcement (see below) for full details. AISC is before amortisation and after nickel co-product credits. The project is available for investment from downstream partners, either as an outright sale or as a development farm-in in exchange for the 100% offtake rights. barraresources.com.au 					

CRITICAL MINERAL(S)	COBALT SA						
PROJECT NAME	KALKAROO						
Location	Located in north-eastern South Australia, near Broken Hill.						
Company name	Havilah Resources Limited						
Company ownership	ASX-listed (HAV)						
	Havilah owns 100% of the Kalkaroo copper-gold-cobalt deposit.						
Project description	Kalkaroo is the largest undeveloped open-pit copper-gold deposit in Australia on a CuEq ore reserve basis, with a 0.74% CuEq grade. The primary sulphide deposit comprises structurally controlled replacement style strata bound chalcopyrite/pyrite mineralisation that is amenable to standard sulphide flotation. The deposit is over 3 km long and 40–80 m thick, with minimal internal waste.						
	At the top of the deposit there are 50–60 m thick, oxidised, supergene enriched gold and native copper ore zones that can be treated by a conventional gravity and carbon-in-pulp (CIP) plant. This oxide gold cap resource of 21.7 Mt at 0.74 g/t Au is included in the overall mineral resource.						
	Mining will be by open-pit methods to potentially >200 m depth, with the top 120–140 m being free dig. Kalkaroo is open in all directions and there is substantial near-mine exploration potential.						
Expected products	 Main products are gold doré from CIP, native copper (near pure copper metavia gravity concentration and copper-sulphide concentrates from a copper flotation circuit. By-product pyrite concentrate, recovered by cleaning of th copper concentrate tails, contains appreciable cobalt and gold. The most economical means of recovering cobalt is the subject of ongoing study both for Kalkaroo and the nearby Mutooroo copper-cobal gold deposit also wholly owned by Havilah. Kalkaroo also contains appreciable rare-earth elements and molybdenum, and studies are currently investigating recovery of these by-product metals. 						
Mineral inventory	JORC Mineral Resources as at 31 July 2019 (Havilah 2019 Annual Repor						
	Resource category	Tonnes (Mt)	Cobalt (%)	Copper (%)	Gold (g/t)		
	Cobalt (note: cobalt resource is not added to the total tonnage)						
	Inferred	193.3	0.012				
	Total	193.3	0.012				
	Copper-gold (Oxide gold cap + sulphide copper-gold)						
	Measured	97.6		0.50	0.47		
	Indicated	34.9		0.39	0.41		
		113.0		0.42	0.33		
		245.5	22.0	0.45	0.40		
	Contained (kt Co and C	.u, koz Au)	23.2	1,097	3,105		
	Havilah's total cobalt me nearby wholly owned Mu 1.53% Cu, 0.16% Co and 0	^{naea.} tal inventory tooroo coppe 0.20 g/t Au in	stands at 4 r-cobalt-go sulphide JC	3.4 kt, includ ld project (12 IRC resource	ling the 2.53 Mt of s).		

Mineral inventory	JORC Ore Reserves as at 31 July 2019 (Havilah 2019 Annual Report):					
	Reserve category	Tonnes (Mt)	Copper (%)	Gold (g/t)		
	Proved	90.2	0.48	0.44		
	Probable	9.9	0.45	0.39		
	Total	100.1	0.47	0.44		
	Contained (kt Cu, koz Au)		474	1,407		
Stage of development	The June 2019 pre-feasibility study (PFS) supports a large-scale open-pit copper-gold mine. Havilah is presently updating the PFS with improved gold recoveries based on new metallurgy test work, revised mining plans, updated metal prices and realising value for the cobalt-rich pyrite concentrates. The option of a lower capital expenditure start-up gold mine, to exploit the oxide gold cap, is also being investigated.					
	Havilah has secured mining leases over the deposit and owns 100% of the surrounding exploration licences. It also owns the Kalkaroo pastoral property in order to avoid any land use conflicts.					
Expected production	Expected annual production (post ramp-up av	erage):			
	• Ore mined and processed:	11 Mtpa				
	• Copper (metal and in concentrate): 30,000 tpa					
	• Gold (metal and in concentrate): 72,000 Oz pa					
	• Cobalt (in pyrite concentrates): ~500 tpa					
	The oxide plant (4 Mtpa) will produce gold bullion and copper metal, and the sulphide plant (7 Mtpa) will produce approximately 100,000 tpa of copper-gold concentrates and 150,000 tpa of pyrite concentrates over a 13-year production period. The copper-gold concentrates are estimated to contain 26–29% copper and 10–16 g/t gold, while the pyrite concentrate contains 0.29–0.34% cobalt, 2.5-3.6 g/t gold and 1% copper.					
Infrastructure	The deposit lies 50 km north of the transcontinental railway line and Barrier Highway, just over one-hour drive west-north-west of the regional mining centre of Broken Hill. Grid power comes within 8 km of Kalkaroo. Havilah owns the land on which the Kalkaroo deposit is located and has a regional exploration base camp nearby.					
Project development capital costs	Estimated pre-production capital expenditure of A\$332m including mining fleet of A\$76m and a contingency of A\$46m.					
Project economics	2019 PFS results, based on recovery of copper and gold only, include: estimated pre-tax NPV _{7.5%} of A\$564m and IRR 26% at US\$2.89/lb Cu, US\$1,200/oz Au, AUD:USD \$0.75. Estimated C1 cost of US\$1.67/lb Cu.					
Project funding	Havilah is seeking a major investment funding partner to assist in the financing and development of the project. Discussion is welcomed with interested parties who have the financial capability.					
Other	Key upside potential: improved gold recoveries; additional revenue from recovery of cobalt, rare-earth elements and molybdenum; resource expansion; near mine discoveries; and improved metal prices against those used in PFS. For more Kalkaroo project information, refer to havilah-resources-projects.com/kalkaroo					

Gallium (Ga)

No advanced gallium projects in Australia.

Graphite (C)

Advanced graphite projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Un	its	Contained (kt)	Page
Graphite	Siviour	Renascor Resources Ltd	FS	Graphite	87.4	7.50	%	TGC	6,600	70
Graphite	Munglinup	Mineral Commodities Ltd	FS	Graphite	8.0	12.20	%	TGC	975	72
Graphite	Uley	Quantum Graphite Ltd	Care and maint	Graphite	6.3	11.10	%	TGC	697	74
Graphite	Kookaburra Gully	Lincoln Minerals Ltd	FS	Graphite	2.0	15.20	%	TGC	309	76
Graphite	McIntosh	Hexagon Energy Materials	PFS	Graphite	23.8	4.45	%	TGC	1,060	78

CRITICAL MINERAL(S)	GRAPHITE SA					
PROJECT NAME	SIVIOUR					
Location	Located on South Australia's Eyre Peninsula, approximately 15 km west of Arno Bay and 120 km north-east of Port Lincoln.					
Company name	Renascor Resources Ltd					
Company ownership	ASX-listed (RNU)					
	Major shareholdings: Clarke family 11%, direc	tors 9%.				
	Renascor, through its wholly owned subsidiary Ausmin Development Pty Ltd (Ausmin), owns a 100% interest in Siviour.					
Project description	The Siviour Graphite Project is Australia's largest graphite project has one of the largest graphite reserves in the world.					
	The project consists of an open-pit mine and graphite concentrate with 94–96% total gra	l concentrator pr phitic carbon (To	roducing GC).			
	Siviour's low operating cost is due in large part to shallow, horizontal orientation of a single massive ore body that offers comparatively low mining costs.					
	Metallurgical testing has established the ability to produce high-quality graphite products at low operating cost using conventional flotation.					
	During Stage 1 of the Siviour Project, 825 ktpa ore will be mined and processed to produce an average of 80 ktpa graphite concentrate for years, which will be transported by road to Port Adelaide for export.					
	In Year 5, Stage 2 of the project will expand Siviour's production to 1,650 ktpa mined and processed to produce an average of 115 ktpa graphite concentrate for the remainder of the 40-year mine life.					
	Renascor also plans to build a battery anode material manufacturing facility, proposed to be located at Port Adelaide, to convert graphite concentrate into high-value purified spherical graphite (PSG) for the lithium-ion battery (LIB) supply market. A pre-feasibility study on producing PSG was completed in January 2019. The company is currently producing PSG for customer sample purposes and is undertaking advan- technical studies on an integrated mine and PSG production operation.					
	Being located in a stable OECD jurisdiction presents a source of materials for global battery and electric vehicle manufacturer diversified outside of China.					
Expected products	Graphite flake fractions (94–96% TGC).					
Mineral inventory	Mineral resources (as at April 2019):					
	Resource category	Tonnes	TGC			
	Magazina	(Mt)	(%)			
	Indicated	15.8 39 5	<u>8.8</u> 70			
	Inferred	32.1	7.2			
	Total	87.4	7.5			
	Contained (kt)		6,600			
Mineral inventory	Ore reserves (as at March 2019):					
-----------------------------------	--	--	-----------------------------------	--	--	--
	Reserve category	Tonnes (Mt)	TGC (%)			
	Probable	45.2	7.9			
	Contained (kt)		3,571			
Stage of development	Siviour Graphite Project feasibility study co	mpleted in Nove	mber 2019.			
	Anode material spherical plant pre-feasibility study completed February 2019.					
	Mineral lease granted in April 2019.					
	Program for Environment Protection and Resubmitted in 2020.	habilitation (PE	PR) to be			
	In-principle project finance support from Du credit agencies secured in April 2019 and Ma	itch and Austra arch 2020 respe	lian export ectively.			
	Offtake and financing negotiations to be co	mpleted in 2020	D.			
Expected production	Expected annual production:					
		Stage 1	Stage 2			
	Ore mined and processed: 825 ktpa 1,					
	Graphite concentrate (94–96% TGC): 80 ktpa 115 k					
	Anode material facility PSG production:	30 ktpa	30 ktpa			
Infrastructure	Siviour is located near a range of infrastruct which further underpins project economics, and townships for sourcing of materials, ser	cure on the Eyre including roads vices and labou	Peninsula, , grid power, r.			
Project development capital costs	Stage 1 pre-production capital expenditure A\$4m mining pre-strip.	of A\$118m, incl	uding			
	Stage 2 expansion capital expenditure of A be funded out of project cash flows.	577m at year fiv	e planned to			
Project economics	The November 2019 feasibility study on the Siviour Graphite Project, based on a concentrate operation only (no PSG production), delivered a post-tax NPV _{10%} of A\$388m, post-tax IRR of 33% and an average EBITDA of A\$83m.					
	Pre-feasibility study on the anode material facility producing purified spherical graphite delivered a post-tax NPV _{10%} of A\$487m, post-tax IRR of 69% and an average EBITDA of A\$79m.					
Project funding	Renascor intends to finance the project through a combination of debt and equity. Renascor has secured in-principle export credit agency coverage, which is expected to assist with debt financing.					
Other	Company website: renascor.com.au/					
	Feasibility study results: asx.com.au/asxpdf pdf/44bfswj9ztw100.pdf	/20191111/				
	Pre-feasibility study results: asx.com.au/asy pdf/442tds94fc2vg0.pdf	kpdf/20190221,	/			

CRITICAL MINERAL(S)	GRAPHITE WA						
PROJECT NAME	MUNGLINUP						
Location	Located 640 km south-east by road of Perth, 4 km north of the township of Munglinup on the South Coast Highway, 107 km west of Esperance and 81 km east of Ravensthorpe in Western Australia.						
Company name	Mineral Commodities Ltd						
Company ownership	ASX-listed (MRC)						
	In November 2017, MRC's wholly owned subsidiary MRC Graphite Pty Lt entered into a joint venture (JV) agreement with Gold Terrace Pty Ltd, to farm-in to the Munglinup Graphite Project. Under the JV agreement MRC's initial ownership of the Munglinup Project is 51%.						
	Following the completion of the Munglinup P January 2020, MRC has now met the Stage 2 the JV and may now increase its ownership in paying A\$0.8m cash and issuing 30 million or	roject feasibility 2 earn-in require 1 the project to 9 rdinary shares to	y study in ments under 90% by o the vendor.				
	The vendor has the right under Stage 3 of the JV to elect that MRC acquires the remaining 10% of the project via one of the following: (a) MRC issuing 10 million ordinary shares; (b) MRC granting the vendor a 1% gross royalty on all minerals produced; or (c) otherwise standard vendor contribution or watering down provisions to apply.						
	MRC also owns the Skaland graphite mine in Norway and the Tormin mineral sands mine in South Africa.						
Project description	The Munglinup Graphite Project is free-dig, conventional truck and excavator, open-pit mining of high-grade graphite mineralisation, located within a granted mining lease. The resource is open at depth and along strike.						
	ROM ore is processed through a relatively conventional, multi- stage milling and flotation process to produce high-grade graphite concentrates across a range of flake sizes over a 14-year mine life. Graphite concentrates will be trucked to the Port of Fremantle and shipped to export markets.						
	MRC is working with partners, including CSIRO and Doral Fused Materials, under a Cooperative Research Centres Project (CRC-P) to develop a non-hydrofluoric acid purification process that could produce high- purity value-added products from Munglinup concentrate ('Munglinup Downstream Project'), targeting production of battery anode materials in Kwinana.						
Expected products	Flake graphite concentrates (>95% TGC).						
	Conversion of flake graphite concentrates into high-value products, including battery anode materials from Munglinup Downstream Project, is also being studied.						
Mineral inventory	Mineral resources (as at 8 January 2020):						
	Resource categoryTonnesTGC(Mt)(%)						
	Indicated 4.5 13.1						
	Inferred 3.5 11.0						
	Total	8.0	12.2				
	Contained (kt) 975						

Mineral inventory	Ore reserves (as at 8 January 2020):					
	Reserve category		Tonnes (Mt)	ТGС (%)		
	Probable		4.2	12.8		
	Contained (kt)			543		
Stage of development	Feasibility study completed in Januar	ry 2020.				
	Mining lease granted, native title ext environmental approvals expected in	inguished o NQ3 2020.	n mining res	erve and		
	Studies to support Munglinup Downs	stream Proje	ect are unde	rway.		
Expected production	Expected annual production (life-of-	mine averag	je):			
	• ROM ore mined and processed:	400-5	500 ktpa			
	• Flake graphite concentrate (95% TG	GC): 52 ktp	a			
Infrastructure	Power is proposed to be supplied by a 4.0MW power station supplying power to the plant at 415V. Water is supplied from several production bores that have been pump tested to ensure that the bore field will support the operation.					
	Project access is via the South Coast Highway. Product will be transported via road train travelling 610 km for delivery to the Port of Fremantle for export.					
Project development capital costs	Total start-up capital cost of US\$61r development capital and US\$4m pre	n including l -strip capita	JS\$56m pro al.	ject		
Project economics	January 2020 feasibility study results, based on producing graphite concentrates for export via the Port of Fremantle, include:					
	Project post-tax IRR: 30%	Post-tax I	NPV (7%): US	5\$111m		
	Post-tax payback period: 2.7 years	LOM EBIT	DA: US\$426	im		
	Average annual EBITDA: US\$31m Operating cost/t(FOB): US\$491r					
	Additional value creation may be possible from the Munglinup Downstream Project under study.					
Project funding	The company welcomes discussion regarding financing of the project or offtake and seeks a strategic partner for project equity, joint venture or long term offtake arrangements in both the concentrate and downstream businesses.					
Other	Company website: mineralcommodit	ies.com/				
	Feasibility study results: www.asx.co pdf/44d43bfrfj3drg.pdf	m.au/asxpd	lf/20200108	8/		
	Contact: Peter Fox, IR and Corporate Development, peter.fox@mncom.com.au					

CRITICAL MINERAL(S)	GRAPHITE SA					
PROJECT NAME	ULEY					
Location	The Uley graphite mine (Uley) is located on the southern tip of the Eyre Peninsula in South Australia, approximately 20 km west-south-west of the deep water port of Port Lincoln, an agricultural and fishing centre with a population of approximately 14,000.					
Company name	Quantum Graphite Ltd					
Company ownership	ASX-listed (QGL)					
	The major shareholders are Chimaera Capital Limited and Lycopodium Limited. Board members and interests associated with board members represent approximately 40% of the issued and outstanding share capital holding.					
Project description	Uley is recognised as a significant area of graphite mineralisation and one of the largest coarse flake deposits in the world. The graphitic mineralisation at Uley is disseminated high-grade flake style.					
	The Uley graphite mine commenced production in the 1890s, producing over 100,000 tonnes of >90% purity large and extra-large graphite flake, until the mine was closed in the early 1990s. The Uley plant and mine was then placed on care and maintenance. From 2013 to 2015 Valence Industries reprocessed the low-grade ore stockpiles at Uley using the existing processing plant. Valence Industries also obtained environmental permits and completed associated work toward restarting of in-pit mining at Uley. Quantum acquired 100% of the Uley project in 2018 and completed an updated feasibility study on restarting production in 2021. This next stage of development at Uley, which includes pre-stripping of the mine and construction of a new processing plant onsite, is called the Uley 2 Project.					
	Uley flake is characterised by high-quality large flake with very low impurities and proven metallurgical performance with graphite purity exceeding 96% and up to 98% for very large flake.					
	Uley has a history of supplying leading refractory manufacturers in Europe and North Asia and Uley 2 targets a proven customer demand base with excellent knowledge of Uley flake characteristics.					
	Mining at Uley 2 consists of a free-dig, open-cut mining operation with a strip ratio of 4.6:1 utilising local mining and haulage contractors. The first stage of Uley 2 is 12 years with significant expansion to the east, south and west within the existing tenement boundaries.					
	Consistent with historical processing, the Uley 2 process plant will accept run-of-mine ore and liberate graphite particles through crushing and grinding. The flotation and polishing sections will be the critical processing functions for recovering graphite, upgrading the graphite flake to maximise purity, and maintaining coarse flake to the maximum extent possible. Graphite flake product will be packaged into 1,000 kg baffled bulk bags and transported to the Port of Adelaide for export in standard 20 ft and 40 ft shipping containers.					
Expected products	Uley 2 production will consist of three main graphite flake products:					
	• +50 mesh – 97.5% purity					
	• +80 mesh – 97% purity					
	• +100 mesh – 96.5% purity.					

Mineral inventory	Mineral resources (as at 15 July 2019):					
	Resource category	Tonnes (Mt)	ТGС (%)			
	Measured	0.8	15.60			
	Indicated	4.2	10.40			
	Inferred	1.3	10.50			
	Total	6.3	11.10			
	Contained (kt)		697			
	Ore reserves (as at 11 December 2019):					
	Reserve category	Tonnes (Mt)	ТGС (%)			
	Proved	0.8	11.66			
	Probable	3.2	11.95			
	Total	4.0	11.89			
	Contained (kt)		476			
	Program for Environmental Protection and F 24 December 2014. The PEPR covers the Ule and ML5662 that are 100% owned by the co The updated feasibility study for Uley 2 has company is now seeking offtake agreements funding for the Uley 2 process plant.	Rehabilitation (P ey 2 mining lease mpany. been completed s to support its p	EPR) dated es ML5561 and the project			
Expected production	Expected Uley 2 (first stage) annual product	ion:				
	• Ore mined and processed: 0.5 Mtpa					
	• Graphite flake: 55-60 ktpa					
	Subject to market conditions, significant inc minimal capital costs are planned through the of optimisation identified in the feasibility st	reases in produc ne adoption of va cudy.	ction at arious levels			
Infrastructure	Uley's proximity to Port Lincoln is a major advantage, delivering a labour force with strong technical skills and excellent infrastructure including town water, grid-connected electricity and sealed roads to port. As an existing mine, Uley's infrastructure includes a tailings storage facility and plant and equipment facilities.					
Project development capital costs	The Uley 2 capital costs are estimated at US\$60m, which will be principally applied to the construction of the new Uley 2 process plant.					
Project economics	For the first stage of Uley 2, the key project	economics are:				
	Total undiscounted cash flow: A\$207m					
	Cost (Av LOM): US\$368/dmt	5				
	Product price (ex-works): US\$919/dmt					
Project funding	The company is currently pursuing various o seeks to utilise concluded offtake agreemer funding of Uley 2. The company welcomes di of the project construction or offtake.	fftake arrangem Its to support th scussion regard	nents and ne project ing financing			
Other	Company website: quantumgraphite.com					

CRITICAL MINERAL(S)	GRAPHITE SA						
PROJECT NAME	KOOKABURRA GULLY						
Location	Located on South Australia's Eyre Peninsula	Located on South Australia's Eyre Peninsula, 35 km north of Port Lincoln.					
Company name	Lincoln Minerals Limited						
Company ownership	ASX-listed (LML)						
	Australian ASX-listed company – Chairman James Zhang, Managing Director Johnson Zhang and Non-Executive Directors Kee Saw, Zhuojia (Georgia) Liu and Ruiyu Zhang (CFO). Lincoln has 575 million shares on issue with the top five shareholders owning 57% of the company. The company has no debt and A\$1.1 m in cash as at 31 March 2020.						
Project description	The Kookaburra Gully Graphite Project is one of the highest-grade graphite projects globally, and has a very low start-up capital cost of A\$44m and a production profile suited to world graphite demand and supply volumes. Kookaburra Gully is a well-advanced project with the mineral lease granted and the environmental approvals process commenced.						
	The project has an ore reserve and completed feasibility study based on a processing rate of 250,000 tpa to produce 35,000 tpa graphite flake concentrates on site over a 10-year open-pit mine life.						
	The Kookaburra Graphite Gully Project has significant opportunities for further value enhancement including:						
	• extension of project life beyond 8–10 years	5					
	 incorporating further value-adding production spherical graphite manufacture for the bate 	t development, i tery market	including				
	• potential savings on implementation costs due to conservative design and costings adopted.						
	Exploration upside at Koppio and Kookaburra Gully extended satellite deposits with an inferred mineral resource of 1.9 Mt at 9.8% TGC defined at Koppio.						
Expected products	Graphite flake concentrates 94–97% loss on ignition (LOI) with recoveries of 86–92%.						
	Graphite flake concentrate breakdown:						
	>150 µm 10% distribution at +97% LOI						
	+75 μm <150 μm 25% distribution at +97% LOI						
	<75 µm 65% distribution at +95% LOI						
Mineral inventory	Mineral resource classification (5% TGC cut-off) (as at 27 November 2017):						
	Resource categoryTonnesTGC(Mt)(%)						
	Measured	0.39	14.9				
	Indicated	1.08	14.9				
	Inferred	0.56	16.0				
	Total	2.03	15.2				
	Contained (kt) 309						

Mineral inventory	Ore reserves (as at 27 November 2017):						
	Reserve category	Tonnes (Mt)	ТGС (%)				
	Probable	1.3	14.6				
	Contained (kt)		196				
Stage of development	Feasibility study completed in November 20.	Feasibility study completed in November 2017.					
	Mineral lease granted.						
	Program of Environment Protection and Reh government approval process commenced. F the PEPR is currently on hold due to market o	abilitation (PEP Further work on conditions.	R) progressing				
	Freehold land tenure.						
	No offtake agreements are yet in place.						
Expected production	Expected annual production:						
	• Ore mined and processed: 0.25 Mtpa						
	• Graphite flake: 35 ktpa						
Infrastructure	To be undertaken:						
	• Power demand 1.5 MWh – via grid and/or onsite hybrid renewables;						
	• Water demand 220 kL/day – via onsite borefield,						
	• Road – upgrade Pillaworta Road to all-weat	her road ~8 km,	and				
	• Port – Port Adelaide, with Lucky Bay and Cape Hardy viable in future.						
Project development	Total start-up capital cost of A\$44m:						
capital costs	• A\$22m ore processing plant						
	• A\$7m onsite infrastructure, tailings storag	e facility, roads					
	 A\$10m government approvals, vegetation offset, bond, property purchase 						
	• 20% contingency						
Project economics	Per November 2017 published feasibility study (onsite production of graphite concentrates):						
	• Pre-tax NPV $_{10\%}$ of A\$81m over the life of mine (10 years)						
	Internal rate of return of 33%						
	Payback period of 3-4 years						
	• Operating cost of A\$705m (US\$550m) per tonne concentrate for LOM						
	The project has a very low A\$44m start-up capital expenditure and a low cost per tonne of graphite concentrate produced on a global basis.						
Project funding	To discuss this project or other possible opportunities, please contact the company directly.						
Other	lincolnminerals.com.au						
	Email: info@lincolnminerals.com.au						

CRITICAL MINERAL(S)	GRAPHITE (PGE POTENTIAL) WA							
PROJECT NAME	мсілтоян							
Location	Located 100 km north of Halls Creek, in the East Kimberley region of Western Australia.							
Company name	Hexagon Energy Materials Ltd	Hexagon Energy Materials Ltd						
Company ownership	ASX-listed (HXG)							
Project description	The McIntosh Project, which comprises 16 tenements spanning approximately 550 km ² in the East Kimberley region of Western Australia, is a large-scale, high-quality flake graphite deposit. JORC Mineral Resources for the project currently stand at 23.8m tonnes (Mt) grading 4.5% total graphite carbon (TGC) for 1.1m contained tonnes (5 April 2019). In addition, there is a significant exploration target comprising 50 to 100 Mt grading between 2.0 and 5.0% TGC.							
	Hexagon has deliberately focused on verifyir flake as a driver of commercial value, rather tonnes. Graphite is an industrial mineral whe on product quality and suitable commercial a the product specifications. Hence much of it downstream transformation into a range of industrial applications.	Hexagon has deliberately focused on verifying the quality of the graphite flake as a driver of commercial value, rather than simply increasing the tonnes. Graphite is an industrial mineral where the focus needs to be on product quality and suitable commercial applications that match the product specifications. Hence much of its work has focused on the downstream transformation into a range of high-purity battery and industrial applications.						
	In Hexagon's PFS level study (May 2017) the upstream, Stage 1 project was estimated to comprise open-pit mining operations supplying 2.4 Mtpa of graphite ore to a flotation concentrator plant to produce 80–90 ktpa of flake graphite concentrate, exported via the Port of Derby.							
	In September 2019, declining flake graphite concentrate prices prompted Hexagon to focus more on its downstream Stage 2 graphite transformation, as reported in May 2019, downstream scoping study outcomes. This was based on a standalone operation with graphite precursors that could include McIntosh materials but was not reliant on it. The company expects the flake graphite market to return from surplus to balance in around 2024–25							
	The McIntosh Project is also considered highly prospective for magmatic nickel-copper and PGE deposits. No data compilation or exploration work targeting these types of deposits has been undertaken on this tenement package since around 2005.							
Expected products	Graphite flake concentrates grading 94–98% TGC, sorted to size classifications – Stage 1 upstream.							
	The downstream Stage 2 project assumed a product suite of approximately 12 distinct, refined, milled and sometimes shaped graphite materials to be used to make expanded graphite, battery anode material, conductivity enhancement materials, ultra-fine powders and precursor for synthetic diamonds, as well as an expanded graphite precursor.							
Mineral inventory	Mineral resources (as at May 2017):							
	Resource category Tonnes T (Mt)							
	Indicated	19.2	4.44					
	Inferred 4.6 4.50							
	Total Contained (kt)	23.8	4.45					
	Contained (kt) 1,060							

Stage of development	An upstream pre-feasibility study was completed in May 2017.					
	The company submitted mining lease applications in November 2017 but withdrew these in early 2020.					
	Pending an improvement in flake graphite concentrate prices, expected in 2024–25, Hexagon has largely suspended development work for graphite.					
Expected production	Expected Stage 1 annual production as per Hexagon's pre-feasibility study completed in May 2017:					
	• Ore mined and processed: 2.4 Mtpa					
	• Graphite concentrate (94–98% TGC): 80–90 ktpa					
	Work undertaken in 2018–19 included additional drilling, which led to the upgrade of the mineral resource and ongoing metallurgical test work. Further metallurgical test work and flow sheet design is required to be able to progress a feasibility study when graphite prices improve.					
Infrastructure	The project is within 12 km of the sealed Great Northern Highway. There is also an all-weather haul road traversing the tenements in close proximity to the main graphite deposits, providing useful access to the highway and around the project.					
Project development capital costs	Hexagon's pre-feasibility study completed in May 2017 estimated start- up capital costs. However, these are under review due to likely changes to the process flow sheet, costs for capital equipment and the underlying mining inventory.					
Project economics	An assessment of the project economics is contained in Hexagon's May 2017 pre-feasibility study announcement. However, this has not been included as it is no longer current due to changes to graphite prices and updated technical information.					
Project funding	The company welcomes discussion regarding financing of the project construction or offtake in regard to graphite, or alternatively, exploration joint ventures for the nickel-copper and PGE potential.					
Other	hxgenergymaterials.com					
	info@hxgenergymaterials.com					

Hafnium (Hf)

Advanced hafnium projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	U	nits	Contained (kt)	Page
Hafnium	Dubbo	Alkane Resources Ltd	Pre- const	Zr, Nb, Hf, Ta, REE	75.2	0.04	%	HfO ₂	30	107

Dubbo project summary included in the rare-earth elements section.

Helium (He)

Advanced helium projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Un	its	Contained (kt)	Page
Helium	Darwin	BOC/ Linde Group	Operating	Не					NA	_

Indium (In)

No advanced indium projects in Australia.

Lithium (Li)

Advanced lithium projects (total mineral resource tonnag	ye, grade and contained mineral)
--	----------------------------------

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	U	nits	Contained (kt)	Page
Lithium	Greenbushes	Talison Lithium Au Pty Ltd	Operating	Li	157.1	2.25	%	Li ₂ O	3,532	-
Lithium	Pilgangoora (Pilbara Min)	Pilbara Minerals Ltd	Operating	Li, Ta	223.2	1.27	%	Li ₂ O	2,835	-
Lithium	Mt Marion	ASX:MIN; Gangfeng Lithium	Operating	Li	72.9	1.37	%	Li ₂ O	995	-
Lithium	Pilgangoora (Altura)	Altura Mining Ltd	Operating	Li	45.7	1.06	%	Li ₂ O	482	-
Lithium	Mt Cattlin	Galaxy Resources Ltd	Operating	Li, Ta	14.6	1.29	%	Li ₂ O	188	-
Lithium	Wodgina	Mineral Resources Ltd	Care and maint	Li, Ta	259.2	1.17	%	Li ₂ O	3,032	-
Lithium	Mount Holland	Wesfarmers Ltd; SQM	FS	Li	189.0	1.50	%	Li ₂ O	2,843	86
Lithium	Bald Hill	Alita Resources Ltd	Care and maint	Li, Ta	26.5	0.96	%	Li ₂ O	255	-
Lithium	Finniss	Core Lithium Ltd	FS	Li	14.7	1.32	%	Li ₂ O	209	88
Lithium	Kathleen Valley	Liontown Resources Ltd	PFS	Li, Ta	156.0	1.40	%	Li ₂ 0	2,184	90

CRITICAL MINERAL(S)	LITHIUM WA						
PROJECT NAME	MOUNT HOLLAND LITHIUM PROJECT						
Location	The lithium deposit and proposed mine and co approximately 120 km south-south-east of S km east of Perth in Western Australia. The re Kwinana Strategic Industrial Area, 40 km sou	oncentrator is lo outhern Cross, a finery will be loc ith of Perth.	cated Ind 410 ated in the				
Company name	Covalent Lithium Pty Ltd						
Company ownership	The Mount Holland Lithium Project is owned Pty Ltd (a wholly owned subsidiary of Wesfa SQM Australia Pty Ltd (a wholly owned subsi Minera de Chile S.A.) (SQM) .	50% by Wesfarr rmers Limited) a diary of Socieda	mers Lithium and 50% by d Química y				
Project description	The Mount Holland Lithium Project comprises significant lithium operation. The joint ventur	s the developme re partners are p	nt of a globally ursuing:				
	• development of the lithium deposit to mine	e spodumene ore	9				
	 construction of a concentrator at Mount H the ore to produce spodumene concentrat 	olland, capable o e	ofprocessing				
	• construction of a lithium hydroxide refinery in Kwinana to process the concentrate and produce approximately 45,000 tonnes per annum of battery-grade lithium hydroxide.						
Expected products	The Mount Holland Lithium Project will produce spodumene concentrate. This concentrate will then be transported to Kwinana to be refined into value-added battery-grade lithium hydroxide.						
Mineral inventory	Mineral resources (as at 19 March 2018):						
	Resource category	Tonnes (Mt)	Li ₂ 0 (%)				
	Measured	66	1.58				
	Indicated	106	1.52				
	Inferred	17	1.11				
	Total	189	1.50				
	Contained Li ₂ O (kt)		2,842				
	Contained LCE (kt)		7,030				
	Ore reserves (as at 18 December 2018):						
	Reserve category	Tonnes (Mt)	Li ₂ O (%)				
	Proved	54	1.50				
	Probable	40	1.50				
	Total	94	1.50				
	Contained Li ₂ O (kt)		1,410				
	Contained LCE (Mt)		3,490				

Stage of development	In November 2019, Covalent Lithium completed a feasibility study on the Mount Holland Lithium Project.
	The feasibility study confirmed that the project presents a world-class opportunity to develop an integrated large-scale, long-life and high- grade operation in Western Australia. Work is progressing to optimise the project and obtain all necessary approvals. A final investment decision is expected in Q1, CY2021.
Expected production	Expected annual production (post ramp-up average):
	• Ore mined and processed: 1.7 Mtpa
	• Concentrate: 350 ktpa
	• Battery-grade lithium hydroxide: 45,000 tpa
Infrastructure	Mine: The mine is located approximately 120 km south of Southern Cross. All of the required infrastructure to support the construction and operation of the project will be purpose built to meet the project requirements.
	Refinery: Covalent Lithium has a lease for 76 ha of area in the Kwinana Industrial Estate. The refinery location has access to well-established infrastructure including logistics (rail, road and port), energy (electricity and natural gas) and chemical reagents and supplies.
Project development capital costs	Confidential information – not for public disclosure.
Project economics	Confidential information – not for public disclosure.
Project funding	The project will be funded by the shareholders from existing/future facilities. No external debt is required to fund the construction of the project.
Other	www.covalentlithium.com

CRITICAL MINERAL(S)	LITHIUM NT						
PROJECT NAME	FINNISS LITHIUM PROJECT						
Location	Located 20 km south of Darwin in the North	ern Territory.					
Company name	Core Lithium Ltd						
Company ownership	ASX-listed (CXO)						
Project description	Core Lithium is developing the construction-ready Finniss Lithium Project, which is now at the front of the line of new global lithium production, developing one of the most capital-efficient and cost- competitive lithium projects in Australia.						
	Core's 2019 feasibility study highlights conventional open-pit mining high-grade (1.4% Li ₂ O) ore over an initial 3.5-year mine life, with onsit processing using simple and efficient dense media separation (gravity producing 175,000 tpa of high-quality 5.5–6% lithium concentrate at competitive operating cost and low A\$73m capital expenditure.						
	Located only 25 km from Darwin Port, the Fi arguably the best supporting logistics chain Australian lithium project.	nniss Lithium Pr to markets in As	oject has sia of any				
	Finniss project mineral resource upgrade to 14.72 Mt at 1.32% Li ₂ O was announced in June 2020. The increased portion of indicated and measured resources positions Core well for a material increase in or reserve classification expected to be completed in June 2020. Minim studies targeting a 7–10 year mine life are also expected to be comp in June 2020 and will be used to update the project feasibility study Resource drilling is also planned later in 2020, aimed at further extertable compared to provide the project feasibility study.						
Expected products	175,000 tpa of high-quality 5.5–6% Li ₂ 0 spo	dumene concen	trate.				
	In addition to the primary spodumene conce studying commercial production of Fines Lit 1.2% Li ₂ O and also Feldspar by-products.	ntrate product, hium (DSO) at ap	Core is oproximately				
Mineral inventory	Mineral resources (as at 15 June 2020):						
	Resource category	Tonnes (Mt)	Li ₂ 0 (%)				
	Measured	3.2	1.47				
	Indicated	4.4	1.37				
	Inferred	7.1	1.22				
	Total	14.72	1.32				
	Contained (kt)		209				
	Ore reserves (as at 17 April 2019):						
	Reserve CategoryTonnesLi20(Mt)(%)						
	Proven	1.0	1.40				
	Probable	1.2	1.43				
	Total	2.2	1.41				
	Contained (kt)		32				

Stage of development	Finniss project feasibility study completed in April 2019.						
	Project regulatory approvals received in April 2020 to commence construction and operation of the first lithium project in the Northern Territory. Approvals include the environmental impact statement and mining management plan (MMP).						
	Binding offtake agreements signed accounting for 50% of planned Fi production, including:						
	• 75,000 tpa spodumene conce of China's largest lithium produ	ntrate offtake wi ucers, signed in 2	th Szechuan Yahua, one 019				
	• 50,000 tpa of spodumene cor sheet with Transamine, a Swiss signed in May 2020, diversifyir channels into Europe.	ncentrate offtake s-based commod ng end-markets a	and prepayment term ities trading company, nd strengthening				
	Discussions continue with other	r potential offtak	e partners.				
	The company has selected pref packages of the Finniss project	erred lead contra construction.	ctors for various work				
	Core is well funded through to t the next six months. Constructi commercial production in 2022	he final investme ion is expected to	nt decision expected in commence in 2021 and				
Expected production	Average annual production, pos	st ramp-up:					
	• Ore mined and processed:	0.5–1.1 Mtpa					
	• Li ₂ O spodumene concentrate: 175,000 tpa						
Infrastructure	The project has the advantage infrastructure and stable workf infrastructure includes a sealed nearby grid power, gas and rail. the Port of Darwin, which is Aus commodity export port to East existing storage and ship-loadir	of close proximity Force of the city o I road within 1 km The project is onl Stralia's closest de Asia. Darwin Port ng facilities availa	y to the capital city of Darwin. Available of the project, and y 75 km by road from eepwater and bulk t is fully equipped with ble to Core.				
Project development capital costs	The project has a low start-up c Australia's lowest capital intens	apital cost estim	ate of A\$73m, one of 9 projects.				
Project economics	Key results from the Finniss Pro will be enhanced with the forthe	oject's April 2019 coming revised fe	feasibility study, which asibility study:				
	Key feasibility metric	April 2019 FS	Update objectives				
	Ore reserves	2.2 Mt	Significant increase				
	Project mine-life	3.5 years	7–10 year target				
	Mining method	Open-pit	Open-pit & underground				
	Concentrate product quality	5.5% Li ₂ 0	5.8–6% Li ₂ 0				
	Product recovery	+70%	+/- 5%				
	Start-up capital (CAPEX)	A\$73m	+/- 5%				
	CI operating cost (OPEX)	05\$300/tonne	1st/2nd quartile				
Project funding	Core is planning to approach glob aim of reaching financial closure six months. Project finance is exp from customer finance in the for	bal debt and equit and a final invest bected to include m of pre-payment	y finance markets with the nent decision in the next significant contribution t or similar.				
	Core Lithium welcomes the opp opportunities with investors in a	ortunity to discu Australia's next li	ss equity investment thium resource.				
Other	corelithium.com.au						

CRITICAL MINERAL(S)	LITHIUM, TANTALUM			WA				
PROJECT NAME	KATHLEEN VALLEY	KATHLEEN VALLEY						
Location	The Kathleen Valley Project is located in Western Australia, approximately 680 km north-east of Perth and approximately 350 km north-west of Kalgoorlie, within the Eastern Goldfields of the Archaean Yilgarn Craton.							
Company name	Liontown Resources Limited							
Company ownership	ASX-listed (LTR)							
	Top 50 shareholders own approxi shareholder is Tim Goyder with a	imately 52% of pproximately 1	company. The 8%.	main				
Project description	Kathleen Valley is a wholly owned resource with excellent grade and mining district well serviced by m infrastructure.	ntalum ned social						
	Mining will be via open-pit and un expected to exceed 30 years.	derground tec	hniques, with n	nine life				
	An onsite processing plant will processing plant will processing overse company is also investigating the processing facilities.	oduce spodum eas or processi viability of bu	iene (lithium) a ng locally in W ilding its own d	nd tantalum A. The ownstream				
	The mineralisation remains open potential for the resource to be in	The mineralisation remains open along strike and at depth with good potential for the resource to be increased.						
Expected products	Spodumene concentrate (6% Li ₂ C	Spodumene concentrate (6% Li ₂ 0).						
	Tantalum concentrate (up to 25%	6 Ta ₂ O ₅).						
Mineral inventory	Mineral resources (as at May 202	0):						
	Resource category	Tonnes (Mt)	Li ₂ 0 (%)	Ta₂O₅ (ppm)				
	Measured	20	1.3	140				
	Indicated	105	1.4	130				
	Inferred	32	1.3	110				
	Total	156	1.4	130				
	Contained (kt)		2,184	20.3				
	Ore reserves (as at December 20	19):						
	Reserve Category		Tonnes (Mt)	Li ₂ O (%)				
	Proved		17.1	1.2				
	Total		50.4	1.2				
	Contained (kt)			604				
	Note: This reserve is based on a mineral re released in July 2019.	esource estimate (MRE) of 74.9 Mt at	1.3% Li ₂ 0				

Stage of development	Pre-feasibility study completed in December 2019.					
	Updated pre-feasibility study based o and due for completion in early Q4 20	n the May 2020 MRE is in progress 20.				
	Mineral resource largely located on ap	proved mining leases.				
	Baseline environmental studies completed with formal environmenta and development approvals to be sought once design of the final min plan and related infrastructure is established. No red flags have been identified.					
	Discussions with traditional owners a	re ongoing.				
	Project is currently uncommitted with arrangements in place	n no offtake agreements or funding				
Expected production	Expected annual production (post rar	np-up average):				
	• Ore mined and processed:	2 Mtpa				
	• Spodumene concentrate (6% Li ₂ 0):	295 ktpa				
	• Contained Li ₂ 0:	18,000 tpa				
	• Tantalum concentrate (~25% Ta_2O_5):	672 tpa				
	• Contained Ta_2O_5 :	170 tpa				
Infrastructure	The project is located immediately adjacent to the sealed Goldfields Highway, which connects to mineral exporting ports at Geraldton ar Esperance.					
	Other infrastructure located close to a natural gas pipeline and mine camps taking large passenger aircraft.	the project includes a powerline, with sealed airstrips capable of				
Project development capital costs	A\$240M pre-production capital expendition capital expendition only).	diture based on 2019 PFS (open-pit/				
Project economics	Financial outcomes of the 2019 PFS (open-pit/lithium only):				
	• A\$1.94bn LOM free cash flow after- A\$84m per annum during production	tax (averaging approximately n)				
	• 4 years payback period					
	• A\$507m post-tax NPV _{8%(real)}					
	• 25% post-tax IRR					
	• cash costs of A\$564/dmt Li20 conce	entrate (excluding tantalum credits).				
	The updated 2020 PFS scheduled for expected to deliver significantly impro incorporate tantalum concentrate by	completion in early Q4 2020 is oved financial outcomes, and will -product production.				
Project funding	Liontown Resources is adequately fur completion on the project.	nded through to feasibility study				
	The company welcomes discussion re- construction, including parties with e	garding financing of the project xpertise in downstream processing.				
Other	Company website: Itresources.com.au	J				
	Investor presentation: ltresources.com announcements/6982059.pdf	m.au/sites/default/files/asx-				

Magnesium (Mg)

Advanced magnesium projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Ur	nits	Contained (kt)	Page
Magnesium	Kunwarara	Sibelco Australia Ltd	Operating	Mg	430.0	16.73	%	MgO	71,948	-
Magnesium	Myrtle Springs	Calix Ltd	Operating	Mg	0.9	38.80	%	MgO	333	-
Magnesium	Thuddungra Magnesite	Young Mining Company	Operating	Mg	1.3	15.30	%	MgO	194	-
Magnesium	Winchester	Korab Resources Ltd	PFS	Mg	16.6	43.20	%	MgO	7,171	-

Manganese (Mn)

Advanced manganese projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Un	its	Contained (kt)	Page
Manganese	Groote Eylandt (ROM)	South32	Operating	Mn					N/A	94
Manganese	Groote Eylandt (Sands)	South32	Operating	Mn					N/A	94
Manganese	Woodie Woodie	Consolidated Minerals	Operating	Mn	48.5	30.60	%	Mn	14,841	-
Manganese	Bootu Creek	OM Holdings Ltd	Operating	Mn	4.8	22.89	%	Mn	1,094	-
Manganese	Ant Hill	ASX:MIN; ASX:MAS	Care and maint	Mn	3.1	24.70	%	Mn	766	-

CRITICAL MINERAL(S)	MANGANESE NT								
PROJECT NAME	GROOTE EYLANDT MINING COMPANY (GEMCO)								
Location	GEMCO is located on Groote Eyla approximately 650 km south-ea	GEMCO is located on Groote Eylandt in the Gulf of Carpentaria, approximately 650 km south-east of Darwin in the Northern Territory.							
Company name	South32 Limited								
Company ownership	ASX-listed (S32)								
	Joint venture between S32 (60%	6) and Anglo Am	nerican Plc (40	%).					
Project description	GEMCO has been producing high 50 years.	GEMCO has been producing high-grade manganese ore for more than 50 years.							
	A high-quality ore body, low strip has made GEMCO one of the low	p ratio and prox vest-cost produ	imity to Asian cers in the wor	customers Id.					
	Ore is concentrated onsite befo Milner Bay port – a deep-water k export.	re being hauled perth where ore	16 km north to is loaded onto	o GEMCO's o ships for					
	GEMCO has grown its operation more than 10% of the world's se	s over the deca aborne mangar	des and now pi nese.	roduces					
Products	High-grade manganese ore								
Mineral inventory Mineral resources (South32 Annual Report 2019):									
	ROM ^{1,2}	Tonnes	Mn	Yield					
	Resource category	(Mt)	(%)	(ppm)					
	Measured	75	45.8	49					
	Indicated	54	41.8	48					
	Inferred	22	39.9	48					
	Total	151	43.5	48					
	Sande ^{1,3}	Tonnos	Мр	Viold					
	Resource category	(Mt)	(%)	(ppm)					
	Measured								
	Indicated	8.8	20.8						
	Inferred	2.3	20.0						
	Total	11	20.6						
	Ore reserves (South32 Annual R	eport 2019):							
	ROM ^{1,4}	Tonnes	Mn	Yield					
	Reserve category	(Mt)	(%)	(ppm)					
	Proved	44	43.6	60					
	Probable	14	42.5	61					
	Total	58	43.3	60					

Mineral inventory	Sands ^{1,4}	Tonnes	Mn	Yield					
	Reserve category	(Mt)	onnes Mn Yield (Mt) (%) (ppm) 7.2 40 22 7.2 9.2 32 9.2 9.2 5.2 9.2 9.2 5.3 9.	(ppm)					
	Proved								
	Probable	7.2	40	22					
	Total	7.2	40	22					
	Notes:								
	 The following cut-off grades have beer reporting ROM Mineral Resources, (b) and (c) no cut-off grades applied to Sar 	n used: (a) >=35% Mi >=40% Mn washed nds Mineral Resour	n washed product u product for ROM O ces or Ore Reserve	used for re Reserves, s.					
	 2. ROM Mineral Resource tonnes are stated as in situ manganese grades are represented or examples and should be read together with their respective mass 3. Sands Mineral Resource tonnes and manganese grades are stated as in situ. 4. Ore Reserve tonnes are states as delivered to process plant manganese grades are stated as in situ. 								
	5. Mineral Resources and Ore Reserves a as at 30 June 2019. Mineral Resource Resources which, after the application plan, have been classified as Ore Reser	re reported in 1009 estimations include o of all modifying fa ves.	% terms and repres Measured and Indi ctors, and develop	ent estimates cated Mineral nent of a mine					
Stage of development	Exploration commenced in the 1 shipment of manganese ore in 1	Exploration commenced in the 1960s with GEMCO producing its first shipment of manganese ore in 1968.							
	Since then, GEMCO has undergone several significant expansions a developments to produce more than 5 Mt of manganese ore per an 2019.								
	Additional growth has been achi through the sands beneficiation sands concentrate product.	eved through t plant (SBP) to	he reprocessin produce the pr	g of tailings emium					
Production	• Mn ore production (South32 sh	nare): 3,349 ktp	ba						
	South32 Annual Report 2019								
Infrastructure	The GEMCO mining fleet include 8 road trains and ancillary equip	es 18 D11 dozers ment.	s, 30 CAT 777 h	aul trucks,					
	Ore is concentrated onsite using waste and generate a range of s	g gravity separa aleable produc	ation processes ts.	to remove					
	Operating a blended FIFO and res and maintains the township of Aly	idential workfor /angula and the	ce, GEMCO fully Groote Eylandt	manages Airport.					
Project development capital costs	N/A								
Project economics	South32 share (US\$m) – (South3	32 Annual Repo	ort 2019):						
	Revenue: \$930m								
	Underlying EBITDA: \$643m								
	Underlying EBIT: \$588m								
Project funding	N/A								
Other	Project website: south32.net/ou	ır-business/aus	stralia/gemco						
	Annual reports: south32.net/inv reporting-suite	vestors-media/	investor-centre	e/annual-					

Niobium (Nb)

Advanced niobium projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Units		Contained (kt)	Page
Niobium	Dubbo	Alkane Resources Ltd	Pre- const	Zr, Nb, Hf, Ta, REE	75.2	0.44	%	Nb ₂ O ₅	331	107

Dubbo project summary included in the rare-earth elements section.

Platinum-group elements (PGE) (Pt, Pd, Rh, Ru, Ir, Os)

Advanced PGE projects (total mineral resource ronnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Ur	nits	Contained (kt)	Page
PGE	Panton	Panoramic Resources Ltd	FS	Pt, Pd	14.3	5	ppm	PGE	0.07	-

Rare-earth elements (REE) (Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) Excluding Sc

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Units		Contained (kt)	Page
REE	Mount Weld	Lynas Corporation Ltd	Operating	REE	55.4	5.40	%	TREO	3,000	101
REE	Olympic Dam	BHP	Operating	REE					N/A	-
REE	Eneabba Stockpile	lluka Resources Ltd	Operating	Zr, REE, Ti	1.0	10.34	%	TREO	103	103
REE	Nolans	Arafura Resources Ltd	Pre-const	REE, P	56.0	2.60	%	TREO	1,456	105
REE	Dubbo	Alkane Resources Ltd	Pre-const	Zr, Nb, Hf, Ta, REE	75.2	0.88	%	TREO	662	107
REE	Yangibana	Hastings Tech. Metals Ltd	Pre-const	REE	21.3	1.12	%	TREO	238	109
REE	Browns Range	Northern Minerals Ltd	Pre-const	REE	9.3	0.67	%	TREO	57	111
REE	Donald	Astron Ltd	FS	Zr, Ti, REE	2,427.0	0.06	%	TREO	1,398	128
REE	WIM 150	Murray Zircon Pty Ltd	FS	Zr, Ti, REE	1,650.0	0.06	%	TREO	908	132
REE	Fingerboards	Kalbar Resources Ltd	FS	Zr, Ti, REE	530.0	0.09	%	TREO	490	134
REE	Avonbank	WIM Resource Pty Ltd	PFS	Zr, Ti	490.0	0.06	%	TREO	308	140

Advanced REE projects (total mineral resource tonnage, grade and contained mineral)

REE heavy mineral sands project summaries (Donald, WIM 150, Fingerboards and Avonbank) are included in the titanium section.

CRITICAL MINERAL(S)	RARE-EARTH ELEMENTS WA							
PROJECT NAME	MOUNT WELD							
Location	Located approximately 35 km south-west of Laverton, in the Kalgoorlie Gold Fields district of Western Australia.							
Company name	Lynas Corporation Ltd							
Company ownership	ASX-listed (LYC)							
Project description	ription Lynas has a proven track record as the world's second-largest pro of rare-earth materials. The company operates the only rare-eart separation facility of scale outside China and is the leading supplie customers in Japan, Europe and the US in high-technology market including green technology such as electric vehicles.							
	Lynas is an ethical and enviro certified under international	nmentally resp standards.	onsible produ	cer, and is				
	Lynas sources its rare-earth elements from its deposit at Mount Weld in Western Australia, one of the world's highest grade rare-earth mines with 25+ – year mine life at August 2018.							
	Mount Weld ore is mined and concentrated at the Mount Weld processing plant. The concentrate is shipped to Lynas's Malaysian refinery, the largest, most advanced rare-earths chemical processing plant in the world.							
	Lynas is developing a process to undertake first-stage proc leaching). Once the plant is op will be shipped to Lynas's Mal	algoorlie, Wes concentrate (c cerial from the for further p	estern Australia, (cracking and ne Kalgoorlie plant processing.					
	Lynas is also developing a processing facility in Texas, US, which w the mixed heavy rare-earth compound similar exposure group (SE which is produced by Lynas Malaysia from Mount Weld concentra							
Products	Lynas produces NdPr oxide, Nd oxide, Pr oxide, Ce carbonate, Ce oxide, LaCe carbonate, LaCe oxide, SEG oxide – mixed heavy rare-earths (samarium, europium, gadolinium, terbium, dysprosium, yttrium).							
Mineral inventory	Mount Weld rare-earth depo (as at 30 June 2019):	sit mineral resc	ources 2019					
	Resource category	Tonnes (Mt)	TREO* (%)	TREO ('000 tonnes)				
	Measured	17.3	7.9	1,370				
	Indicated	12.0	5.5	660				
	Inferred	25.9	3.6	930				
	Total	55.2	5.4	2,980				
	*TREO = total rare-earth oxides (La ₂ C Ho ₂ O ₃ , Er ₂ O ₃ , Tm ₂ O ₃ , Yb ₂ O ₃ , Lu ₂ O ₃) + Y figures.	D ₃ , CeO ₂ , Pr ₆ O ₁₁ , Nd ttrium (Y ₂ O ₃). Tota	$_{2}O_{3}$, Sm $_{2}O_{3}$, Eu $_{2}O_{3}$, Is may not balanc	Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , e due to rounding of				

Mineral inventory	Mount Weld rare-earth deposit ore reserves 2019 (as at 30 June 2019):						
	Reserve category	Tonnes (Mt)	TREO* (%)	TREO ('000 tonnes)			
	Proved	14.4	8.7	1,258			
	Probable	5.1	7.7	390			
	Total	19.5	8.5	1,648			
Stage of development	Lynas has been developing the Mount Weld ore body since 2001 and has produced finished rare-earth products for customers since 2013. In February 2020, Lynas was awarded major project status by the Australian Government to establish its new rare-earths processing plant (cracking and leaching) in Kalgoorlie, Western Australia. In December 2019, the project was awarded lead agency status by the Government of Western Australia. The company expects to invest up to A\$500m in the new facility, and create up to 500 jobs during peak construction and over 100 new ongoing jobs in Kalgoorlie. The new plant will be operational by July 2023. In May 2020, the US Department of Defense awarded Phase 1 funding to Lynas for the development of a heavy rare-earth processing plant in Hondo, Texas. This facility will address a key supply-chain deficiency for US consumers and is a key element of Lynas's 2025 growth plan.						
	These investments in WA and the US will support Lynas' continued growth.						
Production	FY19 actual annual production:						
	• TREO (Malaysia): 19,737 t						
	• NdPr (Malaysia): 5,898 t						
Infrastructure	Lynas benefits from fully inst which have been optimised o	called operating ver several yea	g facilities in tv rs of operatior	vo locations, 1.			
	Mine and concentration plant Laverton.	at Mount Weld,	, Western Austr	ıstralia, near			
	Advanced materials plant in a Kuantan).	an industrial es	tate in Gebeng	ı, Malaysia (near			
Project development capital costs	Planned A\$500m 'Lynas 2025' growth project including new processing plant (cracking and leaching) in Kalgoorlie and as investments in Mount Weld and Kuantan.						
	Additional capital investment	t in Texas subje	ect to USG tend	der.			
Project economics	FY19 financial results (AUD): net profit after tax (NPAT) of A\$80.0m; profit from operating activities (EBIT) of A\$56.4m; EBITDA of A\$100.7m; net sales revenue of A\$363.5m; cash flows from operating activities of A\$104.1m.						
Project funding	Lynas is an operating and profitable business with substantive growth plans. Operating cash flow will be used to fund growth with additional support expected from non-traditional sources, including existing and new government stakeholders.						
Other	lynascorp.com general@lynascorp.com						

CRITICAL MINERAL(S)	TITANIUM, ZIRCONIUM, RARE-EARTHS WA							
PROJECT NAME	ENEABBA							
Location	Located in Eneabba, 150 km south of Geraldton in Western Australia.							
Company name	Iluka Resources Ltd							
Company ownership	ASX-listed (ILU)							
Project description	The Eneabba mineral sands recovery project involves the extraction, processing and sale of a strategic stockpile of historical monazite-rich material that is currently stored in a mining void at Eneabba, Western Australia.							
	The focus of in the minera processing m satisfies pro	Phase 1 is al resource nethodolo duct stew	s to mone e. This ha ogy and tl vardship	etise mona: Is required ne selection protocols.	zite conce the devel n of a chai	entrates con opment of a nnel to mark	tained viable ket, which	
	The deposit i before trans	is at surfa port to th	ice and m ne Port of	naterial is m ^F Geraldtor	nined and 1 for shipn	screened at nent.	site	
	Phase 1 is a low-risk, low-capital re-entry for Iluka into the rare-earth market.							
	Studies into Phase 2 of the project are well underway and being progressed as a high priority. Phase 2 involves further processing of the concentrate to produce separate and much higher grade monazite and zircon concentrate products.					ng of the zite and		
Expected products	Phase 1: mo	nazite-zir	con conc	entrate (~2	0% mona	zite).		
	Phase 2: mor	nazite and	l zircon c	oncentrate	es (~80% r	nonazite).		
Mineral inventory company ownership	Mineral resources as at 24 July 2019 (HM assemblage basis):							
	Resource category	Tonnes (Mt)	Total HM grade (%)	llmenite (%)	Zircon (%)	Monazite (%)	Xenotime (%)	
	Measured	0.84	83.7	33	26	20	1.2	
	Indicated	0.16	77.5	37	28	15	1.2	
	Total	1.0	82.7	34	26	20	1.2	
	Contained ((kt)	827	282	216	165	10	
	Ore reserves as at 18 February 2020 (HM assemblage basis):							
	Reserve category	Tonnes (Mt)	Total HM grade (%)	llmenite (%)	Zircon (%)	Monazite (%)	Xenotime (%)	
	Proved	0.81	84.4	33	26	20	1.2	
	Probable	0.15	78.3	37	28	15	1.2	
	Total	0.96	83.5	34	26	20	1.2	
	Contained ((kt)	802	273	208	160	10	

Mineral inventory company ownership	Notes:1. In situ (dry) metric tonnage is reported.2. Ore Reserves are a subset of Mineral Resources.3. Mineral assemblage is reported as a percentage of HM.4. Rounding may generate differences in the last decimal place.					
Stage of development	Phase 1 – operating, offtake agreement for 50 ktpa concentrate for 2 years					
	Phase 2 – feasibility study underway					
Expected production	Expected annual production (post ramp-up	o average):				
		Phase 1	Phase 2			
	Concentrate	~50 ktpa	~100 ktpa			
	Contained zircon	~9 ktpa	12–16 ktpa			
	Contained monazite ~10 ktpa ~16-20 ktp					
	Note: Phase 1 concentrate will contain ~20% monazite contain ~80% monazite.	, whereas Phase :	2 concentrate will			
Infrastructure	Phase 1: mining unit, screening plant and pro Phase 2: additional upgrading facilities, sub	duct handling oject to study	facilities in place. outcomes.			
Project development	Phase 1: A\$10m.					
capital costs Phase 2: A\$20-40m (subject to study outcomes and necessary approvals).						
Project economics	No figures available.					
Project funding	Internally funded from cashflow or available debt facilities.					
Other	iluka.com					
	Presentation to 2020 Bank of America Merrill Lynch Global Mining Conference					

CRITICAL MINERAL(S)	RARE-EARTH ELEMENTS NT							
PROJECT NAME	NOLANS							
Location	Located 135 km north-west of Alice Springs in the Northern Territory.							
Company name	Arafura Resources Ltd							
Company ownership	ASX-listed (ARU)							
Project description	The Nolans Project is supported by one of the world's largest rare-ear mineral resources with substantial growth potential. Ore reserves ar sufficient to support mining and processing operations for 33 years a capable of sustained production to meet 5–10% of global demand fo NdPr oxide, the key rare-earth input to high-strength NdFeB perman magnets.							
	The metallurgical proces characteristics of the No risked in pilot plant oper	s developed b blans ore body ations during 2	y Arafura le and has be 2016–2020	everages th en compre	jes the natural mprehensively de-			
	The project will encompa a rare-earth separation constructed at the Nola	ass an open-pi facility) and re ns site.	t mine, a pr lated infras	ocess plant structure t	nt (including to be			
Expected products	NdPr oxide.							
	SEG/HRE (middle/heavy rare-earth) carbonate.							
	Cerium hydroxide.							
	Fertilizer-grade (54% P_2O_2) phosphoric acid.							
Mineral inventory	Mineral resources (as at	7 June 2017; 1	% TREO cut	-off grade)):			
		(Mt)	(%)	(%)	(% of TREO)			
	Measured	4.9	3.2	13	26.1			
	Indicated	30.0	2.7	12	26.4			
	Inferred	21.0	2.3	10	26.5			
	Total	56.0	2.6	11	26.4			
	Contained (kt)		1,456	6,160	384			
	Ore reserves (as at 16 Ma Reserve category	arch 2020): Tonnes	TREO	P ₂ O ₅	NdPr			
		(Mt)	(%)	(%)	(% of TREO)			
	Proved	5.0	3.0	13	26.2			
	Probable Total	24.6	2.8	13	26.5			
	Contained (kt)	29.3	2. 9 856	3.835	20.4			
			- 050-	- 3,035	220			
Stage of developmentNolans is in execution readiness and Arafura is progressing with front-end engineering and design (pre-FEED) of the project's ba configuration, established in the February 2019 feasibility stud All NT Government and Australian Government environmental					vith pre- s base case cudy.			
	approvals are in place, and the project is on track to receive final mining (development) approval from the NT Government in mid-2020.							

Expected production	Subject to securing project funding, first product from Nolans is expected to be delivered in 2023.							
	Production (post ramp-up)	Tonnes per annum						
	Ore feed	923,000						
	Concentrate	291,000						
	TREO	12,010						
	Products							
	NdPr oxide	3,920						
	SEG/HRE carbonate	540						
	Cerium hydroxide	7,540						
	Phosphoric acid (54% P_2O_5)	133,390						
Infrastructure	The project is located 12 km west of a transnational highway, which also passes through Alice Springs 135 km to the south. Alice Springs is also connected by rail to ports in Darwin and Adelaide. The project site is adjacent to an operating natural gas pipeline and within 25 km of an extensive groundwater aquifer that can meet the project's operational life requirements.							
Project development capital costs	Pre-production capital costs of A\$1,003m including contingency.							
Project economics	Project metric	Result						
	Operating costs	US\$27.02/kg NdPr oxide						
	(net of phosphoric acid credit)							
	NPV (after tax with 10% discount rate) A\$782m							
	IRR	17.29%						
	EBITDA (average)	A\$337m per annum						
	Payback	Year 5						
Project funding	Project funding Arafura is actively engaging with potential offtake and supply-char partners in Japan, Europe, South Korea, the US and China, target users that are not aligned with the Made in China 2025 strategy. overall objective is to attract an export credit agency (ECA) syndi linked to product offtake in some of these jurisdictions.							
	Arafura's engagement with banks, key advisor groups and ECAs supports the view that the strategic nature of NdPr, the alignment with clean- energy applications and the specialised capital equipment requirements of the project are a good fit with the mandate of a number of ECAs. The company is also investigating opportunities for debt funding linked to engineering and procurement.							
	Strategic equity either at the project or company level is an integration of project funding. If the right strategic equity parter be attracted to the project, it is likely the remaining equity required to the position.							
Other	Contact: Gavin Lockyer, Managing Director							
	Company website: arultd.com/							
	Definitive feasibility study summary: arultd.com/projects/nolans/ definitive-feasibility-study.html							
	Updated Ore Reserves: wcsecure.weblink.com.au/pdf/ARU/02214717.pdf							
CRITICAL MINERALS	ZIRCONIUM, NIOBIUM, HAFNIUM, TANTALUM, REE NSW						NSW	
---------------------	--	---	--	--	--	--	--	--
PROJECT NAME	DUBBO							
Location	Located at Toong 400 km north-we	Located at Toongi, 25 km south of Dubbo (population 45,000), 400 km north-west of Sydney in New South Wales.						
Company name	Australian Strat	egic Mate	erials Limi	ited				
Company ownership	Australian Strate producing specia the 100% owner	egic Mater Ity metals of the Dub	rials Limit and oxid obo Projec	ed (ASX:A es for adv ct.	SM) is foo anced tec	cused on hnologies	and is	
Project description	The Dubbo Project is a large in-ground resource of zirconium, hafnium, niobium, yttrium and other rare-earth elements. It is the most advanced poly-metallic project of its kind outside China, making it a strategic supply of critical minerals for a range of sustainable technologies and future industries that is independent of China and traditional titanium sands production. The project has an initial mine life of 20 years with the potential to extend to 70+ years. ASM is progressing the production of zirconium and hafnium metals and has entered into an agreement to acquire 95% of its joint venture partner Ziron Tech, which owns patented low emission, high purity metal-refining technology. ASM will also acquire the pilot plant constructed in 2020 to confirm the technology. The technology has application to produce rare- earth elements (REE) metals. It is intended that these materials will be produced onsite at the Dubbo Project or within Australia, or components located in South Korea and Australia							
Expected products	ASM expects to p and a range of ra earths, praseody (Tb), gadolinium (other REE based	oroduce zi re-earth e mium (Pr) (Gd) and y on marke	irconium (elements and neoc ttrium (Y) t demand	ZrO ₂), haf including: lymium (N), with the l and proce	nium (HfC high-dem d), dyspro possibility essing opt	y ₂), niobium and magne sium (Dy), y of produc ions.	n (Nb ₂ O ₅) et rare- terbium cing	
Mineral inventory	Mineral resource	s (as at 30) June 20	17):				
	Resource category	Tonnes (Mt)	ZrO ₂ (%)	HfO ₂ (%)	Nb₂O₅ (%)	Ta₂O₅ (%)	TREO (%)	
	Measured	42.8	1.89	0.04	0.45	0.03	0.88	
	Inferred	32.4	1.90	0.04	0.44	0.03	0.88	
	Total resource	75.2	1.89	0.04	0.44	0.03	0.88	
	Contained (kt)		1,421	30	331	23	662	
	Ore reserves (as	at 30 Jun	e 2017):					
	Reserve category	Tonnes (Mt)	ZrO ₂ (%)	HfO ₂ (%)	Nb ₂ O ₅ (%)	Ta₂O₅ (%)	TREO (%)	
	Proved	18.9	1.85	0.04	0.44	0.03	0.87	
	Contained (kt)		350	8	83	5	165	

Stage of development	Pre-construction – feasibility study completed in 2013, a full front-end engineering design completed in 2015 and an engineering and financial update completed in 2018. The project has been substantially engineered and is construction-ready, subject to financing, with the mineral deposit and surrounding land acquired. All major state and federal approvals are in place, and the project has a well-established flow sheet, with over 10 years of successful pilot plant operation.
Expected production	At full production, the project is expected to have a mine production and processing plant feed rate of 1 Mtpa, producing:
	• Zirconium: 16,374 t p.a. (~40% revenue)
	• Hafnium: 200 t p.a. (~10% revenue)
	• Niobium: 1,967 t p.a. (~20% revenue)
	• Rare-earths: 6,664 t p.a. (237 t p.a. – Pr ₆ O ₁₁ , 921 t p.a. – Nd ₂ O ₃ as well as Tb and Dy) (~30% revenue)
Infrastructure	Located 25 km south of the city of Dubbo in NSW, the project has excellent surrounding infrastructure. ASM owns 3,456 hectares of land at Toongi, encompassing the ore resource and the land required for the processing plant.
	The project is accessed via local main roads for the construction and operation phases. Water for the project will be supplied from ASM-issued licences estimated at approximately 2 gigalitres annually.
	The installation of a approximately 16 km new single-circuit 132 kV overhead transmission line from the existing 132 kV line is required to provide power for the project. ASM has secured the power line easement from Toongi to Geurie.
Project development capital costs	The front-end engineering design (high accuracy) estimate is A\$1.3bn capital cost to build mine and full plant to oxide production (to be located in Australia).
	ASM continues to progress optimisation work designed to reduce the capital to develop the project.
Project economics	The project could generate A\$4.7bn free cash flow over the 20-year base case mine life with a forecast base case capital cost of A\$1.3bn. Internal rate of return is estimated between 16.1% and 17.5%, depending on whether capital is managed to build the project in two stages or proceeds to a single 1 Mtpa plant, with both alternatives confirmed viable.
	There is potential for the optimisation work being advanced to increase the internal rate of return to over 25%.
Project funding	The company is progressing the planned demerger of ASM as a poly- metallic producer of critical materials. ASM is progressing strategic partners discussions within South Korea but welcomes discussion regarding financing of the project construction or offtake.
Other	Project website: alkane.com.au/media-research/resources-for-download/ dubbo-project-2/

CRITICAL MINERAL(S)	RARE-EARTH ELEMENTS WA					
PROJECT NAME	YANGIBANA					
Location	Located in the Gascoyne region of Western Australia, approximately 250 km north-east of Carnarvon.					
Company name	Hastings Technology Meta	als Ltd				
Company ownership	ASX-listed (HAS)					
	Hastings Technology Meta focused on its flagship Yan Australia. Market capitalisa	ls Ltd is a rare-e gibana rare-ear ation of A\$124n	arth elements ths Project in n as of 03/06/2	s (REE) company Western 2020.		
Project description	The project involves the development, construction, mining ar processing operations to produce 15,000 tonnes (t) per annur rare-earth carbonate (MREC). MREC product will be trucked to of Fremantle.					
	Yangibana's MREC boasts of value neodymium (Nd) and other RE projects, with an 48% in some deposits. Nd a used in the production of p high-tech products, includi turbines, consumer electro	s of the high- compared to atio of up to raw materials e critical in many e energy wind				
	 The definitive feasibility study was completed in 2017. More that metallurgical flotation tests and two bulk pilot plant studies have completed. Mining will be operated in a conventional open-cut mining manne blast, load and haul). The beneficiation process consists of crus grinding, rougher flotation, regrinding, and cleaner flotation. 					
	The hydrometallurgical pro impurity removal and MRE	cess consists o C product precip	f acid bake, wa bitation.	ter leach,		
	The current reserves and r multiple targets existing; s	esources suppo ubstantial explo	rt a 13-year m pration potent	ine life, with ial also exists.		
Expected products	The final MREC product de REEs (15 in total), with a sig 'magnet' oxides Nd and Pr. for 89% of the economic va	rived from the c gnificantly high Nd ₂ O ₃ (Nd oxide alue of the MRE	pre contains a proportion of 1) and Pr ₆ O ₁₁ (Pr C product.	mixture of the high-value r oxide) account		
Mineral inventory	Mineral resources (as at 31	October 2019):				
	Resource category	Tonnes (Mt)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)		
	Measured	4.15	1.15	0.43		
	Indicated	10.92	1.13	0.38		
	Inferred	1.09	0.35			
	Total 21.25 1.12 0.38					
	Contained (kt)		238	81		
	The established Yangibana held 100% by Hastings. The controlled 70% by Hastings Hastings's 100%-owned Br	Mineral Resour e remaining 14% 5. ockman Project	ces are 86% w are within ten also hosts JO	ithin tenements ements RC resources		
	totalling 41.4 Mt at 0.21% TREO.					

Mineral inventory	Ore reserves (as at 4 November 2019):						
	Reserve category	Tonnes (Mt)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ as % of TREO (%)		
	Probable	12.20	1.13	0.40	37		
	Contained (kt)	12.20	138	49			
Stage of development	All Tier-1 permits f	or project	developn	nent received incl	uding:		
	Commonwealth Er	nvironment	al Permit	: (April 2020).			
	Western Australia	Environme	ental Peri	mit (August 2019)).		
	Native title agreer	nent finalis	ed (Nove	mber 2017).			
	Schaeffler offtake of product.	e supply agi	reement	signed in June 20	20 for up to 33%		
	Offtake contract s	igned with I	Baotou Sl	ky Rock Rare-eart	h (November 2018).		
	Advanced front-er design engineering ordered.	nd engineer g work large	ing and d ely comple	lesign optimisatio eted. Long lead ite	n and detailed ems have been		
	EPCM contract for	r project co	onstruction	on signed (Octobe	er 2019).		
	Project commissic	oning expec	ted durir	ng 2023.			
Expected production	Average annual pr	oduction (p	oost ram	o-up) of:			
	Ore mined and pro	ocess plant	through	out: 1.0 Mtpa			
	Concentrate:			35,000 tpa	a		
	Mixed REE carbon	ate:		15,000 tpa	ba		
	Contained TREO:			8,500 tpa			
	Contained NdPr ox	kide:		3,400 tpa			
Infrastructure	Early infrastructu accommodation vi clearance of the v the Shire roads ha	re works in illage have illage has b ve been ins	cluding c commend een comp stalled.	onstruction of a a ced with all house pleted and site ac	380-room s onsite. Site cess roads from		
Project development capital costs	A\$593m total star confirmed throug Global and Hasting	rt-up capita n a cost val gs.	al, includi idation p	ng 15% continger rogram complete	ncy has been d jointly by DRA		
Project economics	Post-tax NPV _{10%} A	\$549M – IF	RR 21% – I	Payback 3.4 years	5		
Project funding	The project's tota construction perio	l funding re od and prac	equireme tical com	nts are A\$593m unpletion.	ıp until end of the		
	A\$250m loan fron construction is in t	n UFK and ł final discus	KFW for p sions.	process plant equ	ipment and		
	A\$210m infrastru Facility is currentl	cture loan y under ass	from Nor sessment	thern Australia In	frastructure		
	This leaves approx strategic cornerst	imately A\$	150m to ors.	be raise via equit	y placements and		
Other	Company website:	hastingst	echmetal	s.com			
	Investor presentation	ons: hastings	stechmeta	als.com/investor-re	lations/presentations		
	Charles Lew, Chair	man: +65 9	9790 900	08 or +61 8 6117 6	5118		
	Andrew Reid, Chie	f Operation	ns Office	r: +61 432 740 97	5		

CRITICAL MINERAL(S)	RARE-EARTH ELEMENTS WA								
PROJECT NAME	BROWNSRANGE								
Location	Located 160 km south-east of Halls Creek in northern Western Australia.								
Company name	Northern Minerals	Northern Minerals Limited							
Company ownership	ASX-listed (NTU)								
	Northern Minerals L rights for all teneme Browns Range Dome to tenements in the	imited (AS ents cover e. Norther Northern	6X:NTU) h ing the W n Minera Territory	nas 100% (/estern Au ls owns 10 / covering	ownership ustralian p 00% of the the Brow	o and mark portion of t e rare-eart ns Range [eting the th rights Dome.		
Project description	The company constructed and commissioned the Browns Range p plant in 2017–18 and has been operating the pilot plant to underta work to determine the technical and economic viability of the pro- the full-scale commercial project.				vilot ake test cess and				
	The full-scale commercial project. The full-scale project comprises the development of a dysprosium-rich heavy rare-earths (HRE) mining and mineral processing operation at Browns Range. The current mineral resource supports a 12-year mine life, with significant scope to expand this in the future. Ore will be mined using a combination of open-pit and underground mining methods, and processed onsite through a beneficiation plant and a hydrometallurgical plant. Based on the Browns Range feasibility study completed in March 2015, the beneficiation plant will treat up to 585,000 tpa of ore to produce approximately 16,700 tpa of concentrate at 20% total rare-earth oxides (TREO). The concentrate will be further treated in the hydrometallurgical plant to produce 6,000 tpa of high-purity mixed rare-earth carbonate product containing 3,098 tpa total TREO including 279 tpa of dysprosium. The mixed RE carbonate product will be trucked to the Port of Darwin or Wyndham for export to international markets for further downstream processing. The company has commenced studies on individual rare-earth separation methods and this will form part of the future plans of the company to produce separated heavy rare-earth oxides. Dysprosium is the key value driver of the project, accounting for 60% of its forecasted revenue. The NdFeB permanent magnet sector, which is the leading application for rare-earth demand, and in which dysprosium					ch heavy s Range. icant icon of rough owns lant tpa of will tpa of a total uct will onal oaration y to % of ch is sium ergy y			
Expected products	drivetrains. High-purity mixed r rare-earth oxides ir	are-earth	i carbona y, Tb and	ate contai d Lu.	ining prec	Iominantly	y heavy		
	The company plans aspirations, includi	to produo ng separa	ce additio ted HRE	onal prodi oxides an	ucts as pa d Dy met	art of its 2 al and Tb 1	:030 metal.		
Mineralinventory	Mineral resources (as at 7 Ap	ril 2020)	:					
	Resource category	Tonnes (Mt)	TREO (%)	Dy ₂ O ₃ (%)	Y ₂ O ₃ (%)	Tb ₄ O ₇ (%)	HREO (%)		
	Indicated	4.6	0.71	0.06	0.40	0.01	86		
	Inferred	4.7	0.64	0.05	0.37	0.01	87		
	Total	9.3	0.67	0.06	0.38	0.01	87		
	Contained (kt)		57	5	33	1	49		

Mineral inventory	Ore reserves (as at 30 June 2019):							
	Reserve category	Tonnes (Mt)	TREO (%)	Dy ₂ O ₃ (%)	Y ₂ O ₃ (%)	Tb ₄ O ₇ (%)		
	Probable	3.3	0.68	0.06	0.39	0.01		
	Contained (kt)		22	1.9	13.0	0.3		
		2014 5			C 01			
Stage of development	Mining lease granted in June	2014 for	an initia	i period of	r 21 years			
	Feasibility study completed	in March .	2015.					
	Environmental approvals in place for the full-scale plant	olace for p	bilot plan	it, and pri	mary app	roval in		
	Pilot plant constructed in 20 economic feasibility of a full)18 and co -scale cor	ontinues nmercial	to assess operatio	the tech	nical and		
	First mixed rare-earth carbo shipped for customer testin	onate ship g in China	ment of in Decer	2.6 tonne nber 2018	es from pi 3.	lot plant		
	Offtake agreement in place for the mixed rare-earth ele plant.	with Thys ments ca	senkrup rbonate	p Materia produced	ls Trading from the	g GmbH pilot		
	Pilot plant operations tempo COVID-19 outbreak.	orarily sus	pended	in March 2	2020 due to			
Expected production	Pilot plant capacity is 60,00 mixed RE carbonate contain	0 tpa ore ing for 49	process) tpa dys	ed to proc prosium.	duce 1,20	0 tpa		
	Average annual full-scale co	mmercial	product	ion (post i	ramp-up)	of:		
	• Ore mined and processed:	0.58	3 Mtpa					
	• Concentrate:	16,7	00 tpa					
	• Mixed RE carbonate produc	ct: 6,00	00 tpa					
	Contained TREO:	3,09	98 tpa					
	Contained dysprosium:	279	tpa					
Infrastructure	Infrastructure in place includes the pilot plant processing facility, camp, airstrip, water supply and ancillary infrastructure. Additional infrastructure will be built or upgraded as the project moves to full scale.							
	The Shire of Halls Creek and Main Roads WA are upgrading the De and Gordon Downs roads that provide access to the project area local community of Ringer Soak.							
Project development capital costs	A\$329m pre-production cap	oital cost a	as per 20)15 feasib	ility stud	y.		
Project economics	Results from 2015 feasibility with a post-tax IRR of 34% a	y study in nd a payb	clude: a p ack perio	bost-tax N bd of 3.2 y	NPV _{10%} of /ears.	A\$552m,		
Project funding	The company welcomes disc	ussions re	egarding	financing	and/or o	fftake.		
Other	northernminerals.com.au							

Rhenium (Re)

Advanced rhenium projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Uni	its	Contained (kt)	Page
Rhenium	Merlin	Chinova Resources	Care and maint	Re	6.4	26	ppm	Re	0.17	115
Rhenium	Mt Unicorn	Dart Mining	PFS	Mo, Cu, Ag, Re					NA	-

CRITICAL MINERAL(S)	RHENIUM QLD				QLD	
PROJECT NAME	MERLIN					
Location	Located in north-west (Mount Isa and 700 km v the gazetted locality of	Located in north-west Queensland, approximately 145 km south-east of Mount Isa and 700 km west-south-west of Townsville. The project is near the gazetted locality of Selwyn.				
Company name	Chinova Resources Pty	Ltd				
Company ownership	Chinova Resources is 10 Chemicals Group Co., Lt	00% owned by S d. – a privately	Shanxi Dong owned Chi	ghui Coal Co nese compa	bking and any.	
Project description	The Merlin Project is based on the world's highest-grade molybdenum rhenium deposit, discovered in late 2008. The high-grade Little Wiza zone of mineralisation located up-dip and south of the main Merlin zo was discovered in October 2009. The Little Wizard zone lies only 90 m below surface and has been incorporated into the declared Mer mineral reserve.					
	Construction of an explo Phase 1 of the decline de development enabled a c deposit.	ration decline a velopment com ross-cut to be c	t Merlin beg pleted in Ja developed ir	jan in late 20 nuary 2012. nto the Little	010, with Decline Wizard	
	Proposed mining metho hole open stoping and d	ds for the proje rift and fill.	ect include	a combinat	ion of long	
	The project is anticipated to mine and process a nominal 500,000 tpa or ore at peak production over a 13-year mine life. Ore will be treated by an onsite concentrator using a flotation process to produce a molybdenum rhenium concentrate as well as a low-grade copper-gold flotation concentrate.					
	The molybdenum-rhenin roaster to produce ferre ammonium perrhenate.	um concentrat o-molybdenum	e is then re , as well as	fined using rhenium in t	a specialised the form of	
	The Merlin molybdenum November 2014 and alt promising, a subsequen project to be placed into refinery was proposed t shipping there by sea, v	n/rhenium feasi hough the viab t downturn in t o care and mair to be located in ia Townsville.	bility study ility of the he molybde ntenance in China, with	v was compl project was enum prices 2015. In th n the conce	eted in considered caused the is study, the ntrate being	
	Merlin is a construction to quickly take advanta	-ready molybde ge of an upturr	enum/rheni n in prices o	ium mining If these met	project ready als.	
Expected products	Molybdenum-rhenium c	oncentrate (54	4.5% Mo, O.	095% Re).		
	Low-grade copper-gold	flotation conc	entrate (15	% Cu, 0.07	opm Au).	
Mineral inventory	Mineral resources (as at	14 November	2014):			
	Resource category	Tonnes (Mt)	Мо (%)	Re ppm	Cu (%)	
	Measured	0.8	2.30	34	0.3	
	Indicated	4.2	1.50	26	0.2	
	Inferred	1.4	1.10	24	0.5	
	Total	6.4	1.50	26	0.3	
	Contained (kt)		96	0.17		

Mineral inventory	Ore reserves (as at 14 November 2014):						
	Reserve category	Tonnes (Mt)	Мо (%)	Re ppm	Cu (%)		
	Probable	5.2	1.30	22	0.24		
	Total	5.2	1.30	22	0.24		
	Contained (kt)		68	0.12	12.5		
Stage of development	A feasibility study on the Merlin Project was completed in November 2014. Construction of an exploration decline began in 2010, with Phase 1 of the decline development completed in 2012. Decline development enabled a cross-cut to be developed into the Little Wizard deposit.						
	Little Wizard zone was c sample and to test grour	ompleted in 20 nd stability.	014 to obta	ain bulk meta	allurgical		
	Since 2014 the project h	as been on ca	re and mair	ntenance.			
	The Merlin deposit is located on granted mining leases that will allow mining development to commence quickly upon a construction decis and project funding.						
	Development of the Merlin Project will leverage off existing infrast including the decline, underground development and mine site infrastructure already in place.						
	Cultural heritage agreen producing Mo/Re concer either in China or Austra	nent and key d ntrate in Austr lia will need fu	evelopmen alia. Appro rther applic	t approvals i val for refini cation.	in place for ng/roasting		
Expected production	Expected annual produc	tion (post ram	ıp-up avera	.ge):			
	• Ore mined and process	ed:	0.5 Mtpa				
	Molybdenum in concent	trate:	5,300 tp	a			
	Rhenium in concentrate	e:	7 tpa				
	• Low-grade copper-gold	concentrate:	600 tpa				
Infrastructure	Decline and exploration of stations. Mobile vehicle a laydown areas and fuel b	drive with vent and engineerir ay.	tilation and ng worksho	undergroun ps, office, ch	d pumping ange rooms,		
	Power station and airpor	rt 50 km away	at Chinova	's Osborne m	nine.		
Project development capital costs	Start-up capital costs of portion and A\$93m for t	² A\$354m, con he China-base	sists of A\$ d refinery/	261m for the roaster.	e Australian		
	Capital costs based on t longer current.	he 2014 feasik	oility study.	These costs	s are no		
Project economics	Economic results from tl	ne 2014 feasik	oility study:				
	• IRR:	13%					
	• NPV _{10%} :	A\$67.52m					
	• After-tax cash flows:	A\$556m					
Project funding	Project on care and main	itenance.					
Other	chinovaresources.com/t	he-big-picture	e/projects				

Image courtesy of Clean TeQ Holdings Ltd

Scandium (Sc)

Advanced scandium projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	Uni	ts	Contained (kt)	Page
Scandium	Sunrise	Clean TeQ Holdings Ltd	Pre- const	Ni, Co, Sc	183.3	99	ppm	Sc	18	52
Scandium	Platina Scandium	Platina Resources Ltd	FS	Sc (Co, Ni, Al)	35.6	405	ppm	Sc	14	119
Scandium	Nyngan Scandium	Scandium Int. Mining Corp.	FS	Sc	16.9	235	ppm	Sc	4	121

Sunrise project summary included in the cobalt section.

CRITICAL MINERAL(S)	SCANDIUM		NSW			
PROJECT NAME	PLATINA SCANDIUM PROJECT					
Location	Mine site is approximately 53 km north-east of Condobolin and 11 km south-west of Tullamore in central New South Wales. The plant site is approximately 5 km north-west of Condobolin.					
Company name	Platina Resources Limited					
Company ownership	ASX-listed (PGM)					
Project description	The project feasibility study has confirmed the technical and financial viability of constructing a simple, low-strip ratio, open-cut mining operation and staged ore processing facility utilising the high-pressure acid leach process to produce scandium oxide.					
Expected products	Primary product is Sc_2O_3 (scandium oxide) of 99.9	9% purity.				
	There is potential potential future opportunity to nickel, platinum and aluminium products when St undertaken.	o generate coba age 2 plant exp	alt, bansion is			
Mineral inventory	Mineral resources (as at 16 August 2018):					
	Resource category	Tonnes (Mt)	Sc (ppm)			
	Measured	7.8	435			
	Indicated	12.5	410			
	Inferred	15.3	380			
	Total	35.6	405			
	Contained (kt)		14			
	Ore reserves (as at 18 December 2018):					
	Reserve category	Tonnes (Mt)	Sc (ppm)			
	Proved	3.1	575			
	Probable	1.0	550			
	Total	4.0	570			
	Contained (kt)		4			
Stage of development	A feasibility study was completed in December 20 two-stage development of the project over its 30 • Stage 1: small-scale scandium oxide production • Stage 2: increased scandium oxide production (4	D18, which prop D-year mine life (20 t/y) 40 t/y) by upgr	oosed a : ading the			
	processing train. There is potential to also produce cobalt, nickel and high-purity alumina (HPA) by-products following this plant upgrade.					
	Stages 1 and 2 encompass:					
	• development of an open-cut mine using conventional free-dig, load and haul mining methods					
	• transportation of ore by public road from the magnetized and back-loading of dewatered and neutralised	ine site to the p residue	olant site			
	• development of a high-pressure acid leach proce extract the contained scandium from the ore	essing plant to	leach and			

Stage of development	• development of a range of ancillary infrastructure including waste rock emplacements, water storage and management facilities, site access road and intersections
	• rehabilitation of the mine site and plant site to achieve final landforms suitable for agriculture and/or nature conservation.
	A mining lease application (MLA) covering the mine site has been lodged. The lease measures approximately 9.3 km north-south and 7.8 km east- west. This MLA is within the exploration licence EL7644 which is 100% owned by Platina Resources Limited and is due for renewal on 2 December 2020.
	A property lease with option to purchase by July 2021 was signed by Lachlan Shire Council and Platina Resources Limited in July 2018, covering land, formerly used by the Condobolin Abattoir, for the scandium ore processing facility and project administration office.
Expected production	Mine ore production
	• Year 1 – 11,650 tpa; Year 2 – 17,475 tpa; Year 3 – 23,300 tpa; Year 4 – 39,610 tpa; Year 5 onward – 46,600 tpa.
	Scandium oxide production Stage 1:
	• Year 1 – 10 tpa; Year 2 – 15 tpa; Year 3 – 20 tpa.
	Scandium oxide production Stage 2:
	• Year 4 – 34 tpa; Year 5 onward – 40 tpa.
Infrastructure	Existing mine site infrastructure:
	 Access via sealed regional road from Tullamore (11 km) and Condobolin (53 km)
	• Domestic power supply
	Existing plant site infrastructure:
	• Domestic water supply
	• Domestic and HV power supply
	• Access via sealed road from Condobolin and the mine site
	• Site dams, fencing, industrial concrete pads, bulk water storage tanks
	• Site roadways
	• Two residences
Project development Capital Costs	Capital cost for the development of the mine, process plant and associated infrastructure for Stage 1 of the project is US\$48.1m. The capital cost for Stage 2 of the project is US\$11.1m.
Project economics	Cash-flow modelling of the Platina Scandium Project demonstrates a post-tax 100% equity net present value (NPV) at an 8% discount rate of U\$166m (A\$234m). This generates a post-tax IRR of 29% and a payback period of 5.3 years.
Project funding	Project funding options continue to be pursued.
	The company welcomes discussion regarding financing of the project construction or offtake.
Other	platinaresources.com.au

CRITICAL MINERAL(S)	SCANDIUM NSW						
PROJECT NAME	NYNGAN SCANDIUM PROJECT						
Location	Located in New South Wales, approximately 450 km north-west of Sydney and approximately 25 km due west from the town of Nyngan, a rural town of approximately 2,100 people.						
Company name	Scandium International Mining Corporation						
Company ownership	TSX-listed (SCY)						
	The Nyngan Scandium Project is 100% owned by SCY's wholly owned Australian subsidiary, EMC Metals Australia Pty Ltd.						
	SCY is majority (>50%) owned by US investors and 33% owned by the current board and management.						
Project description	The Nyngan Scandium Project represents the world's first scandium-onl mining project. It is based on a shallow and surface-mineable lateritic cla deposit with an attractive scandium enrichment, but relatively little other mineral enrichment. Commercial activity in the area is predominantly farming and mining copper, gold and silver. Annual mining activity will be conducted in short campaigns lasting 4–6 weeks each. Mining and ore sizing will produce feedstock for a continuou high-pressure acid leach autoclave system (HPAL), followed by a solvent extraction (SX) concentration of scandium. Final oxide product is made through an oxalate stage, calcine finish, and packaging. All of this produce recovery, refinement and packaging is planned as mine site activity, to produce a saleable oxide product (Sc. O., or scandia).						
	The process flow sheet resembles a conventional laterite recovery system most comparable to nickel processes. Considerable bench scale and small pilot metallurgical test work has been conducted with third- party laboratories to finalise the flow sheet and SX specifics. US patents have been filed to protect rights in scandium-unique areas.						
	An independent feasibility study (NI 43-101) was completed on the project by Lycopodium (Brisbane) in 2016. The feasibility study considered a 20-year project and utilised approximately 8.5% of the total established mineral resource (M&I), grading 409 ppm Sc average over the Phase 1 project period.						
Expected products	High-grade scandium oxide powder (Sc_2O_3).						
	Scandium product, as oxide, is expected to be off to meet customer requirements, with price adjus Technical and electrical applications will likely war aluminium alloy applications generally prefer 98–	ered in various tment for purit nt 99.9% purity 99% purity.	grades zy. , and				
	Product volumes are relatively small, and transpo markets is likely standard air freight to customer for distribution centres.	rt to global en s/container sea	d-use a freight				
Mineral inventory	Mineral resources (as at May 2016):						
	Resource category	Tonnes (Mt)	Sc (ppm)				
	Measured	5.7	256				
	Indicated	11.2	225				
	Total	16.9	235				
	Contained (kt) 4.0						

Mineral inventory	Ore reserves (as at May 2016):						
	Reserve category	Tonnes (Mt)	Sc (ppm)				
	Proved	0.8	394				
	Probable	0.6	428				
	Total	1.4	409				
	Contained (kt)		0.6				
Stage of development	NI 43-101 compliant feasibility study completed i	n May 2016.					
	Development consent granted in August 2016.						
	Mine lease granted in October 2017 and revised in	n 2019.					
	The current ML covers >50% of the resource included in the feasibility study, sufficient to build and operate the project for 20 years, essentially as designed in the feasibility study, plus expansions to footprint, mining volumes, and product output.						
	The company is currently seeking scandium product offtakes with customers, in order to proceed to project financing and construction.						
Expected production	Expected annual production (post ramp-up average):						
	• Ore mined and processed: 75,000 tpa						
	• Scandium oxide (Sc ₂ O ₃): 38.3 tpa						
Infrastructure	The Nyngan area offers excellent local infrastructure with nearby water pipeline, rail line adjacent to the project, electrical powerlines adjacent to the project and a local skilled mining workforce. The project is 3 km from an all-weather sealed road, 25 km from the town of Nyngan and 20 km from the AGL Solar Farm, which is currently the largest solar farm in Australia at 102 MW						
Project development capital costs	The feasibility study capital cost is estimated at US\$87m, and includes: US\$3m of pre-strip/mining, US\$26 m in infrastructure costs, and US\$8m (11%) contingency.						
Project economics	Results of the 2016 feasibility study (to a +15/-5%	6 accuracy) incl	ude:				
	• IRR of 33%						
	• after-tax NPV _{8%} of US\$225m						
	• payback period of 3.3 years from initial product	ion.					
Project funding	The company welcomes discussion regarding fina construction or scandium product offtake agree	ancing of the pr ments.	oject				
Other	Investor briefings, presentations, videos, company history, and the Nyngan feasibility study can be found on the company website: scandiummining.com.						

Tantalum (Ta)

Advanced tantalum projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	U	Inits	Contained (kt)	Page
Tantalum	Pilgangoora (Pilbara Min.)	Pilbara Minerals Ltd	Operating	Li, Ta	223.2	0.01	%	Ta ₂ O ₅	26	-
Tantalum	Mt Cattlin	Galaxy Resources Ltd	Operating	Li, Ta	14.6	0.02	%	Ta ₂ O ₅	2	-
Tantalum	Dubbo	Alkane Resources Ltd	Pre-const	Zr, Nb, Hf, Ta, REE	75.2	0.03	%	Ta ₂ O ₅	23	107
Tantalum	Wodgina	Mineral Resources Ltd	Care and maint	Li, Ta	259.2	0.02	%	Ta ₂ O ₅	41	-
Tantalum	Bald Hill	Alita Resources Ltd	Care and maint	Li, Ta	26.5	0.01	%	Ta ₂ O ₅	4	-
Tantalum	Kathleen Valley	Liontown Resources Ltd	PFS	Li, Ta	156.0	0.01	%	Ta ₂ O ₅	20	90

Dubbo project summary included in the rare-earth elements section.

Kathleen Valley project summary included in the lithium section.

Titanium (Ti)

Advanced titanium projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	U	nits	Contained (kt)	Page
Titanium	Cataby	Iluka Resources	Operating	Ti, Zr	308.0	1.75	%	TiO ₂	5,394	_
Titanium	Goondicum Crater	Melior Resources Inc	Operating	Ti,P	92.8	5.20	%	TiO ₂	4,828	-
Titanium	Cooljarloo	Tronox Holdings Plc	Operating	Ti, Zr	416.0	0.79	%	TiO ₂	3,299	-
Titanium	South West	lluka Resources Ltd	Operating	Ti, Zr	83.0	3.96	%	TiO ₂	3,289	-
Titanium	Keysbrook	Doral Pty Ltd	Operating	Ti, Zr	78.2	1.26	%	TiO ₂	982	-
Titanium	Jacinth Ambrosia	lluka Resources Ltd	Operating	Zr, Ti	184.0	0.47	%	TiO ₂	866	-
Titanium	Ginkgo-Crayfish -Snapper	Tronox Holdings Plc	Operating	Ti, Zr (REE)	74.0	1.06	%	TiO ₂	783	-
Titanium	Boonanarring	lmage Resources Ltd	Operating	Ti, Zr	30.3	1.98	%	TiO ₂	601	-
Titanium	Wonnerup	Tronox Holdings Plc	Operating	Ti, Zr	21.0	2.63	%	TiO ₂	552	-
Titanium	Eneabba Stockpile	lluka Resources Ltd	Operating	Zr, REE, Ti	1.0	16.92	%	TiO ₂	169	103
Titanium	North Stradbroke	Sibelco Australia Ltd	Operating	Ti, Zr					NA	-
Titanium	Atlas- Campaspe	Tronox Holdings Plc	Construction	Ti, Zr	88.0	3.16	%	TiO ₂	2,785	-
Titanium	Balla Balla	BBI Group Pty Ltd	FS	V, Ti	455.9	13.80	%	TiO ₂	62,914	-
Titanium	Donald	Astron Ltd	FS	Zr, Ti, REE	2,427.0	1.98	%	TiO ₂	47,996	128
Titanium	Thunderbird	Sheffield Resources Ltd	FS	Zr, Ti	3,230.0	1.45	%	TiO ₂	46,893	-
Titanium	Barrambie	Neometals Ltd	FS	Ti, V	280.1	9.18	%	TiO ₂	25,713	130
Titanium	WIM150	Murray Zircon Pty Ltd	FS	Zr, Ti, REE	1,650.0	1.29	%	TiO ₂	21,218	132
Titanium	Fingerboards	Kalbar Resources Ltd	FS	Zr, Ti, REE	530.0	1.60		TiO ₂	8,689	149
Titanium	Mount Peake	TNG Ltd	FS	V, Ti, Fe	160.0	5.30	%	TiO ₂	8,480	158
Titanium	Coburn (Amy)	Strandline Resources Ltd	FS	Ti, Zr	1,606.0	0.48	%	TiO ₂	7,693	136
Titanium	Balranald	lluka Resources Ltd	FS	Ti, Zr	45.5	15.68	%	TiO ₂	7,136	154
Titanium	Cyclone	Diatreme Resources Ltd	FS	Zr, Ti	203.0	0.73	%	TiO ₂	1,488	-
Titanium	Dongara	Tronox Holdings Plc	FS	Ti, Zr	68.0	1.91	%	TiO ₂	1,297	-
Titanium	Atlas	Image Resources Ltd	FS	Ti, Zr	18.1	2.23	%	TiO ₂	404	-
Titanium	Mindarie C	Murray Zircon Pty Ltd	Care and maint	Ti, Zr	19.3	1.28	%	TiO ₂	246	-
Titanium	Mindarie A1	Murray Zircon Pty Ltd	Care and maint	Ti, Zr	8.8	1.20	%	TiO ₂	105	-
Titanium	Australian Vanadium	Australian Vanadium Ltd	FS	V, Ti	208.2	9.00	%	TiO ₂	18,738	162
Titanium	Avonbank	WIM Resource Pty Ltd	FS	Zr, Ti	490.0	1.54	%	TiO ₂	7,534	140
Titanium	Medcalf	Audalia Resources Ltd	FS	V, Ti	32.0	8.98	%	TiO ₂	2,874	-
Titanium	Сорі	Relentless Resources Ltd	PFS	Ti, Zr	75.4	1.79	%	TiO ₂	1,353	-

All heavy mineral sands project summaries are included in the titanium section

(other than the Eneabba Stockpile Project, which is included in the rare-earth elements section).

Mount Peake project summary included in the vanadium section.

Australian Vanadium project summary included in the vanadium section.

ZIRCONIUM, TITANIUM, RARE-EARTH ELEMENTS VIC									
DONALD MINERAL SANDS PROJECT									
Located in M	Located in Minyip, Victoria.								
Astron Corp	oration I	Ltd (Astro	on)						
ASX-listed (A	ASX-listed (ASX:ATR)								
Known as a world-class zircon and rare-earths rich heavy mineral sand (HMS) deposit in the Victorian Murray Basin, the Donald Mineral Sands (DMS) Project is a wholly owned subsidiary of Astron.							and nds		
Priding itself conventiona Project is we and rare-ear	Priding itself on the size of the deposit, together with the ease in conventional methodologies in excavating and processing, the DMS Project is well positioned to be a significant player in the mineral sands and rare-earth markets.								
Conventiona earthmoving mining front concentrate product qual	Conventional gravity separation processing and large-scale bulk earthmoving efforts will see optimum efficiencies from both the mining front and separation process located onsite. Opportunities for concentrate upgrade plant (CUP) implementation allows for diversified product gualities that can be tailored to end-customer demand.						for fied		
Heavy-miner (REO) conter	al conce nt and as	ntrate 85 semblies	5% HMC g are cons	grade – Zr istent acr	0 ₂ , TiO ₂ , ra oss the oi	are-earth re zones.	n oxide		
Mineral reso	urces (as	at 7 Apri	l 2016):						
			Per	centage	of total h	eavv met	als		
Resource	Tonnes	Total		Rutile +		Leuco-	Monz-		
category	(Mt)	HM (%)	Zircon	anatase	Ilmenite	xene	anite		
Measured	448	5.4	20	8	31	21	2		
Indicated	1,171	4.6	18	8	32	18	2		
Inferred	807	4.7	19	9	33	17	2		
Total	2,427	4.8	19	8	32	18	2		
Contained ((kt)	116,496	22,134	9,320	37,279	20,969	2,330		
The project has benefited from several iterations of pre-feasibility and feasibility studies as technologies and global demands have evolved. Having completed a feasibility study in 2015, the DMS Project is now poised to commence the detailed engineering, optimisation and financing stages. Mining lease ML5532 was granted 2011. Retention licences and exploration licences are maintained for future stages and developments beyond the initial start-up zones. Major environmental approvals have been granted, with the EES approved. Submission of the work plan is pending, to be based on detailed							and d. w ancing nents		
	ZIRCONIUM, DONALD MIN Located in M Astron Corp ASX-listed (A Known as a w (HMS) depos (DMS) Projec Priding itself conventional Project is we and rare-ear Conventional earthmoving mining front concentrate product qual Heavy-miner (REO) conter Mineral resource category Measured Indicated Inferred Total Contained (The project h feasibility str Having comp poised to con stages.	ZIRCONIUM, TITANIU DONALD MINERAL S Located in Minyip, Via Astron Corporation I ASX-listed (ASX:ATR Known as a world-cla (HMS) deposit in the Y (DMS) Project is a whi Priding itself on the s conventional method Project is well positio and rare-earth marke Conventional gravity earthmoving efforts mining front and sepa concentrate upgrade product qualities tha Heavy-mineral conce (REO) content and as Mineral resources (as Mineral resources (as Mineral resources (as Mineral a 2,427 Contained (kt) The project has bene feasibility studies as Having completed a f poised to commence stages. Mining lease ML5532 exploration licences a beyond the initial sta	ZIRCONIUM, TITANIUM, RARE DONALD MINERAL SANDS PR Located in Minyip, Victoria. Astron Corporation Ltd (Astr ASX-listed (ASX:ATR) Known as a world-class zircon (HMS) deposit in the Victorian (DMS) Project is a wholly owner Priding itself on the size of the conventional methodologies in Project is well positioned to be and rare-earth markets. Conventional gravity separation earthmoving efforts will see of mining front and separation pr concentrate upgrade plant (CU product qualities that can be the Heavy-mineral concentrate 85 (REO) content and assemblies Mineral resources (as at 7 April Measured 448 5.4 Indicated 1,171 4.6 Inferred 807 4.7 Total 2,427 4.8 Contained (kt) 116,496 The project has benefited from feasibility studies as technolog Having completed a feasibility poised to commence the detail stages. Mining lease ML5532 was grant exploration licences are maint beyond the initial start-up zon	ZIRCONIUM, TITANIUM, RARE-EARTH DONALD MINERAL SANDS PROJECT Located in Minyip, Victoria. Astron Corporation Ltd (Astron) Astron Corporation Murray E (MS) Project is a wholly owned subsidie Project is well positioned to be a signifia and rare-earth markets. Conventional gravity separation process lo concentrate upgrade plant (CUP) implete product qualities that can be tailored to the eavy-mineral concentrate 85% HMC grave (REO) content and assemblies are conset (MEO) indicated 1,171 4.6 18 <t< td=""><td>ZIRCONIUM, TITANIUM, RARE-EARTH ELEMENT DONALD MINERAL SANDS PROJECT Located in Minyip, Victoria. Astron Corporation Ltd (Astron) Astron Corporation Murray Basin, the (DMS) Project is a wholly owned subsidiary of Astron Conventional methodologies in excavating and properties well positioned to be a significant player and rare-earth markets. Conventional gravity separation processing and earthmoving efforts will see optimum efficiencie mining front and separation process located ons concentrate upgrade plant (CUP) implementatio product qualities that can be tailored to end-cus Heavy-mineral concentrate 85% HMC grade – Zr (REO) content and assemblies are consistent acr Mineral resources (as at 7 April 2016): Protectage of (Mt) Mattine 4 Astron <</td><td>ZIRCONIUM, TITANIUM, RARE-EARTH ELEMENTS DONALD MINERAL SANDS PROJECT Located in Minyip, Victoria. Astron Corporation Ltd (Astron) Astron Corporation Houray Basin, the Donald MI (DMS) Project is a wholly owned subsidiary of Astron. Project is a wholly owned subsidiary of Astron. Project is a wholly owned subsidiary of Astron. Polycet is well positioned to be a significant player in the man and rare-earth markets. Conventional gravity separation process located onsite. Oppor concentrate upgrade plant (CUP) implementation allows for produ</td><td>ZIRCONIUM, TITANIUM, RARE-EARTH ELEMENTS DONALD MINERAL SANDS PROJECT Located in Minyip, Victoria. Astron Corporation Ltd (Astron) ASX-listed (ASX:ATR) Known as a world-class zircon and rare-earths rich heavy mineral sate (HMS) deposit in the Victorian Murray Basin, the Donald Mineral Sate (DMS) Project is a wholly owned subsidiary of Astron. Priding itself on the size of the deposit, together with the ease in conventional methodologies in excavating and processing, the DMS Project is well positioned to be a significant player in the mineral sate and rare-earth markets. Conventional gravity separation processing and large-scale bulk earthmoving efforts will see optimum efficiencies from both the mining front and separation process located onsite. Opportunities concentrate upgrade plant (CUP) implementation allows for diversi product qualities that can be tailored to end-customer demand. Heavy-mineral concentrate 85% HMC grade – ZrO₂₁, riO₂₁, rare-earth (REO) content and assemblies are consistent across the ore zones. Mineral resources (as at 7 April 2016): Percentage of total heavy meter data as and a see and and assemblies are consistent across the ore zones. Maineral eagle 448 5.4 20 8 31 21 Indicated 1,171 4.6 18 32 18 18 Indicated 1,171 4.6 18 32 18 17</td></t<>	ZIRCONIUM, TITANIUM, RARE-EARTH ELEMENT DONALD MINERAL SANDS PROJECT Located in Minyip, Victoria. Astron Corporation Ltd (Astron) Astron Corporation Murray Basin, the (DMS) Project is a wholly owned subsidiary of Astron Conventional methodologies in excavating and properties well positioned to be a significant player and rare-earth markets. Conventional gravity separation processing and earthmoving efforts will see optimum efficiencie mining front and separation process located ons concentrate upgrade plant (CUP) implementatio product qualities that can be tailored to end-cus Heavy-mineral concentrate 85% HMC grade – Zr (REO) content and assemblies are consistent acr Mineral resources (as at 7 April 2016): Protectage of (Mt) Mattine 4 Astron <	ZIRCONIUM, TITANIUM, RARE-EARTH ELEMENTS DONALD MINERAL SANDS PROJECT Located in Minyip, Victoria. Astron Corporation Ltd (Astron) Astron Corporation Houray Basin, the Donald MI (DMS) Project is a wholly owned subsidiary of Astron. Project is a wholly owned subsidiary of Astron. Project is a wholly owned subsidiary of Astron. Polycet is well positioned to be a significant player in the man and rare-earth markets. Conventional gravity separation process located onsite. Oppor concentrate upgrade plant (CUP) implementation allows for produ	ZIRCONIUM, TITANIUM, RARE-EARTH ELEMENTS DONALD MINERAL SANDS PROJECT Located in Minyip, Victoria. Astron Corporation Ltd (Astron) ASX-listed (ASX:ATR) Known as a world-class zircon and rare-earths rich heavy mineral sate (HMS) deposit in the Victorian Murray Basin, the Donald Mineral Sate (DMS) Project is a wholly owned subsidiary of Astron. Priding itself on the size of the deposit, together with the ease in conventional methodologies in excavating and processing, the DMS Project is well positioned to be a significant player in the mineral sate and rare-earth markets. Conventional gravity separation processing and large-scale bulk earthmoving efforts will see optimum efficiencies from both the mining front and separation process located onsite. Opportunities concentrate upgrade plant (CUP) implementation allows for diversi product qualities that can be tailored to end-customer demand. Heavy-mineral concentrate 85% HMC grade – ZrO ₂₁ , riO ₂₁ , rare-earth (REO) content and assemblies are consistent across the ore zones. Mineral resources (as at 7 April 2016): Percentage of total heavy meter data as and a see and and assemblies are consistent across the ore zones. Maineral eagle 448 5.4 20 8 31 21 Indicated 1,171 4.6 18 32 18 18 Indicated 1,171 4.6 18 32 18 17		

Stage of development	Two stages of bulk sample pilot plant testing were completed in 2019 for both wet and dry separation concepts.				
	Astron has recently completed a large-scale piloting program where run- of-mine material was successfully separated into a final heavy-mineral concentrate exceeding past performances in both quality and grade.				
Expected production	550–600 kt per annum HMC – Stage 1, with the following approximate production:				
	• Ore mined and processed:	9.0 Mtpa			
	• Concentrate:	600 ktpa			
	• Contained ZrO ₂ :	116 ktpa			
	• Contained TiO ₂ :	254 ktpa			
	• Contained REO:	16.5 ktpa			
Infrastructure	External power, water and renewable energy systems are in feasibility stages – diversification and environmental stewardship will be ongoing efforts beyond project start.				
	Water volumes purchased 2	2011 – 6.975 GL at A\$18m			
Project development capital costs	Not publicly available. Pleas information.	e contact the company for further			
Project economics	Not publicly available. Pleas information.	se contact the company for further			
Project funding	Astron is currently explorin	g funding opportunities.			
Other	Astron is currently exploring funding opportunities. Cautionary statement: certain sections of this project summary contain forward-looking statements that are subject to risk factors associated with, among others, the economic and business circumstances occurring from time to time in the countries and sectors in which the Astron group operates. It is believed that the expectations reflected in these statements are reasonable, but they may be affected by a wide range of variables that could cause results to differ materially from those currently projected.				
	For further information or astronlimited.com.au.	project details, refer to:			

CRITICAL MINERAL(S)	TITANIUM, VANADIUM WA								
PROJECT NAME	BARRAMBIE								
Location	Located approximately 80 km north-west of Sandstone and 475 km east of the port of Geraldton in Western Australia.								
Company name	Neometals Ltd	Neometals Ltd							
Company ownership	ASX-listed (NMT) Neometals – 11% board and management								
Project description	The Barrambie titanium and vanadium project is one of the world's highest-grade hard-rock titanium-vanadium deposits.								
	Barrambie is unique owing to its exceptionally high-grade titanium resource grade, coupled with high vanadium content and the weathered nature of the orebody (low contaminants). Due to the combination of both high-grade titanium and vanadium, a number of flow sheets are being evaluated for the project with a final decision expected to be made in mid- 2021. Common to all processing options is low strip ratio open-cut mining combined with simple beneficiation.								
Expected products	Potential products available fro	m the various fl	ow sheets opti	ons include:					
	 mixed concentrate 								
	• ilmenite and iron/vanadium co	oncentrate							
	• vanadium pentoxide flake and/or ferrovanadium with approximately 80% vanadium content (FeV80)								
	• titanium hydrolysate.								
Mineral inventory	Mineral resource estimate (as at cut-off:	t April 2018) at :	> 0.2% V ₂ O ₅ or :	> 10% TiO ₂					
	Resource category	Tonnes (Mt)	TiO ₂ (%)	V ₂ O ₅ (%)					
	Indicated	187.1	9.61	0.46					
	Inferred	93.0	8.31	0.40					
	Total	280.1	9.18	0.44					
	Contained (kt)		25,713	1,232					
	A high-grade titanium subset of 53.6m tonnes at 21.17% TiO ₂ and has also been identified.	⁵ the total miner d 0.63% V ₂ 0 ₅ us	al resource est ing higher cut-	timate of off grades					
	A high-grade vanadium subset of 64.9m tonnes at 0.82% V_2O_5 an has also been identified.	of the total mine d 16.90% TiO ₂ u	eral resource es sing higher cut	stimate of -off grades					
	Ore reserves (as at May 2019) at	t 0.6% V ₂ 0 ₅ cut-	off:						
	Reserve category	Tonnes	TiO ₂	V ₂ O ₅					
		(Mt)	(%)	(%)					
	Probable	39.9	15.10	0.78					
	Total	39.9	15.10	0.78					
	Contained (kt)		6,025	311					

AUSTRALIAN CRITICAL MINERALS PROSPECTUS 2020

Stage of development	A number of flow sheet options are at various stages of studies. Due to space limitations, only the results from the 2019 feasibility study on production of ferrovanadium are presented here.						
	The project has a granted mining licence and Ministerial approval develop a fully integrated mine, concentrator and chemical procest facility.						
	Neometals has received strong interest in the Barrambie Project from a number of parties in China, and in October 2019 announced that it had entered into a memorandum of understanding with a Chinese research organisation, the Institute of Multipurpose Utilization of Minera Resources Chinese Academy of Geological Sciences, to jointly advance development of Barrambie.						
Expected production	Expected annual production	n (post ram	p-up average):				
	• Ore mined and processed:	3.14 Mtpa	a				
	• Concentrate:	1.061 Mtp	ba				
	• FeV80 produced:	6,337 tpa	L				
Infrastructure	The Barrambie Project is located next to the Meekatharra-to-Sandstone road. The project is 80 km north-west of the town of Sandstone. Sandstone has a regional airport and is serviced with a bitumen road through to the Port of Geraldton.						
	Capital costs from the 2019 Barrambie feasibility study:						
Project development	Capital costs from the 2019) Barrambie	e feasibility study:				
Project development capital costs	Capital costs from the 2019 Capital) Barrambie	e feasibility study: A\$m				
Project development capital costs	Capital costs from the 2019 Capital Infrastructure) Barrambie	e feasibility study: A\$m 99				
Project development capital costs	Capital costs from the 2019 Capital Infrastructure Mining) Barrambie	e feasibility study: A\$m 99 2				
Project development capital costs	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation	Barrambie	e feasibility study: A\$m 99 2 162				
Project development capital costs	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi) Barrambie	e feasibility study: A\$m 99 2 162 246				
Project development capital costs	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP) Barrambie	e feasibility study: A\$m 99 2 162 246 62				
Project development capital costs	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP Ferro vanadium circuit) Barrambie	e feasibility study: A\$m 99 2 162 246 62 35				
Project development capital costs	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP Ferro vanadium circuit Contingency (~15%)) Barrambie	e feasibility study: A\$m 99 2 162 246 62 35 87				
Project development capital costs	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP Ferro vanadium circuit Contingency (~15%) Total) Barrambie	e feasibility study: A\$m 99 2 162 246 62 35 87 692				
Project development capital costs Project economics	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP Ferro vanadium circuit Contingency (~15%) Total Key economic results from the	Barrambie	e feasibility study: A\$m 99 2 162 246 62 35 87 692 arrambie feasibility study:				
Project development capital costs Project economics	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP Ferro vanadium circuit Contingency (~15%) Total Key economic results from the • Mine life: 15 years) Barrambie n nery the 2019 Ba	e feasibility study: A\$m 99 2 162 246 62 35 87 692 arrambie feasibility study:				
Project development capital costs Project economics	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP Ferro vanadium circuit Contingency (~15%) Total Key economic results from to • Mine life: 15 years • Pre-tax NPV _{10%} : A\$430m) Barrambie	e feasibility study: A\$m 99 2 162 246 62 35 87 692 arrambie feasibility study:				
Project development capital costs Project economics	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP Ferro vanadium circuit Contingency (~15%) Total Key economic results from the • Mine life: 15 years • Pre-tax NPV _{10%} : A\$430m • Pre-tax IRR: 21%) Barrambie	e feasibility study: A\$m 99 2 162 246 62 35 87 692 arrambie feasibility study:				
Project development capital costs Project economics	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP Ferro vanadium circuit Contingency (~15%) Total Key economic results from to • Mine life: 15 years • Pre-tax NPV _{10%} : A\$430m • Pre-tax IRR: 21%) Barrambie	e feasibility study: A\$m 99 2 162 246 62 35 87 692 arrambie feasibility study:				
Project development capital costs Project economics Project funding	Capital costs from the 2019 Capital Infrastructure Mining Crushing and beneficiation SRL kiln and hydromet refi Gas lateral from GGP Ferro vanadium circuit Contingency (~15%) Total Key economic results from to • Mine life: 15 years • Pre-tax NPV _{10%} : A\$430m • Pre-tax IRR: 21% • Payback period: 5.1 years The company welcomes disc	Barrambie	e feasibility study: A\$m 99 2 162 246 62 35 87 692 arrambie feasibility study: garding equity ownership, joint construction or offtake.				

CRITICAL MINERAL(S)	ZIRCON, TIT	'ANIUM,	RARE-E	ARTH E	LEMENT	5			VIC
PROJECT NAME	WIM150								
Location	Located in t south-east o	Located in the Wimmera region of Western Victoria, approximately 20 km south-east of Horsham and 280 km north-west of Melbourne.							
Company name	Murray Zirc	Murray Zircon Pty Ltd							
Company ownership	Private unlis Orient Zirco fund. Murra behalf of the WIM150 Pro	Private unlisted company. The WIM150 Project is a joint venture between Orient Zirconic Pty Ltd and Million Up Ltd, a Hong Kong-based investment fund. Murray Zircon Pty Ltd has been appointed to manage the project on behalf of the joint venture. Murray Zircon assumed management of the WIM150 Project in July 2016.							
Project description	WIM150 is o world, with 5 scale, shallor conventiona conveniently roads, rail ar processing n	WIM150 is one of the largest known mineral sands deposits in the world, with 55 years of production underwritten by reserves. The large- scale, shallow deposit has a low strip ratio of 0.5:1 allowing for low-cost conventional mining methods and continuous rehabilitation. The deposit is conveniently located close to key infrastructure including water supplies, roads, rail and powerlines. A skilled local workforce is also available. Ore processing methods use industry-standard equipment and technology.							
Expected products	Zircon flour. Titanium co Rare-earth	ncentrat element:	ces (cont s concen	aining ru trate (co	utile, leuc ontaining	oxene ar monazit	nd ilmeni e and xe	te). motime)	
Mineral inventory	Mineral reso	urces (a	s at 18 Ju	une 2013	3):				
					Percenta	ae of to	tal heav	v metals	5
	Resource	Tonnes	Total	Zircon	Rutile	Leuco-	Illem-	Monz-	Xeno-
	category	(Mt)	HM (%)			xene	inte	anite	time
	Measured	415	4.3	21.7	11.5	5.8	32.3	2.3	0.41
	Indicated	580	4.0	20.4	11.6	6.1	31.0	2.0	0.37
	Inferred	655	3.1	20.1	11.8	6.2	31.1	1.9	0.35
	Total	1,650	3.7	20.7	11.7	6.0	31.4	2.1	0.38
	Contained	(kt)	61,050	12,637	7,143	3,663	19,170	1,282	232
	Ore reserve	s (as at 1	8 June 2	013):					
					Percenta	ge of to	tal heav	y metals	5
	Reserve category	Tonnes (Mt)	Total HM (%)	Zircon	Rutile	Leuco- xene	Illem- inte	Monz- anite	Xeno- time
	Proven	268	4.5	22.0	11.7	5.9	32.7	2.4	0.4
	Probable	283	4.2	21.3	11.6	5.9	30.8	2.2	0.4
	Total	552	4.3	21.6	11.7	5.9	31.7	2.3	0.4
	Contained	(kt)	24,000	5,184	2,808	1,416	7,608	552	96
Stage of development	A feasibility environmen been secure currently be	study ar tal studi d for 10 ing unde	nd projec es have b years. A ertaken.	t optimi been und strategi	sation ha dertaken ic review	is been c A retent of the pr	omplete cion licer oposed j	d. Key nce has project i	 S

Expected production	• Ore mined and processed:	10.1 Mtpa			
	• Heavy mineral concentrate:	413 ktpa			
	• Zircon flour:	73.6 ktpa			
	• Titanium concentrate (total combined):	86.1 ktpa			
	• Rare-earth concentrate:	14.1 ktpa			
Infrastructure	Interstate highway intersects project.				
	275 kV powerline nearby.				
	Water supply on site.				
	Intermodel rail freight terminal 10 km fro	m processing plant site.			
Project development capital costs	A\$482m				
Project economics	Not publicly available.				
Project funding	The company welcomes discussion regarding financing of the project construction or offtake.				
Other	murrayzircon.com.au				

CRITICAL MINERAL(S)	RARE-EARTH ELEMENTS, ZIRCONIUM, TITANIUM VIC							
PROJECT NAME	FINGERBOARDS							
Location	Located 200 km east of Melbourne and 25 km west of the town of Bairnsdale in Victoria.							
Company name	Kalbar Operations Pty Ltd							
Company ownership	A private joint venture between public unlisted Kalbar and private equity through operating company Kalbar Operations Pty Ltd.							
Project description	 The Fingerboards high-grade resource (FHGR) is one of the largest high-grade zircon resources in the world, comprising enriched units in the upper part of the much larger 3 Bt Glenaladale mineral sands deposit. During the first full 10 years of production, the project will produce mineral sands concentrates containing an average of 150,000 tpa of zircon and 13,500 tpa of rare-earths, representing over 10% of global zircon and 5% of global rare-earths supply. Low-cost conventional dry mining is planned to commence in 2022, with the initial mine life forecast to be 15 years, during which approximately 150 Mt of ore will be mined. The project plans to produce a zircon-rich non-magnetic concentrate (non-mags), and ilmenite- and rare-earth-rich magnetic concentrate (mags). Kalbar has signed offtake contracts for over 50% of non-mags with major zircon consumers in China and a mineral processor in Thailand Kalbar is also advancing studies on downstream processing of the mags to produce higher-value rare-earth and ilmenite products. 							
Expected products	Non-magnetic concentrate (zircon rich) with by-products rutile and rare- earths mineral monazite.							
	Magnetic concentrate (ilmenite- and heavy rare-earth elements-rich) containing significant amounts of heavy rare-earths as xenotime.							
	The zircon produced fro is low in impurities such applications such as cert	m Fingerboard as iron and alu amics.	ls non-mag mina, and is	s is of premi s suitable fo	ium grade, r high-value			
Mineral inventory	Fingerboards mineral re	source (as at 2	019):					
	Resource category	Tonnes (Mt)	TiO ₂ (%)	TREO (%)	Zircon (%)			
	Measured	69.1	1.91	0.11	1.26			
	Indicated	206.0	1.75	0.10	1.10			
	Inferred	250.0	1.50	0.08	0.90			
	Total	530.0	1.60	0.09	1.00			
	Contained (kt)		8,689	490	5,349			
	Fingerboards ore reserv	es (as at 2019)):					
	Reserve category	Tonnes (Mt)	TiO ₂ (%)	TREO (%)	Zircon (%)			
	Proved	73.0	1.80	0.11	1.20			
	Probable	100.0	1.90	0.11	1.20			
	Total	173.0	1.90	0.11	1.20			
	Contained (kt)		3,230	191	2,110			

Mineral inventory	The FHGR is part of a total Fingerboards mineral resource defined in 2018 of 910 Mt at 1.2% TiO ₂ , 0.06% total rare-earth oxides (TREO) and 0.7% zircon, which in turn is part of the Glenaladale Mineral Sands Project, which was defined in 2016 as 2.7 Bt at 1.95% heavy mineral.					
Stage of development	A feasibility study was completed in August 2018 and updated in April 2020.					
	Project funding of A\$144m has been secured as a staged private equity investment into Kalbar Operations Pty Ltd (KOPL). Kalbar Ltd expects to remain the majority shareholder of KOPL through to production.					
	There are offtake agreements in concentrate.	place for more than 5	0% of the non-mag			
	An environmental effects statem to be ready for public review in 20	ent is being complete D20 at the time of pub	d and is expected lication.			
	A financial investment decision is construction and commissioning	expected in early 202 within 18 months.	21, followed by			
Expected production	Average annual production:					
		Stage 1 Years 1–2	Stage 2 Year 3			
	Ore mined	7.2 Mtpa	11.8 Mtpa			
	Magnetic concentrate	205 ktpa	294 ktpa			
	Non-magnetic concentrate	223 ktpa	324 ktpa			
	Contained zircon	110 ktpa	155 ktpa			
	Contained TREO	10 ktpa	14 ktpa			
	Contained titanium oxide	135 ktpa	191 ktpa			
Infrastructure	The project is located 25 km west commercial and local government area is well served by sealed road infrastructure, services, and acco for the project is that a dedicated line, which lies 5 km south of the p	t of the town of Bairns t centre of East Gipps s and benefits from re ommodation. A signific d rail siding is planned oroject.	dale, the land. The project eady access to good cant advantage on the regional rail			
Project development capital costs	The initial pre-production capital capital estimated as A\$155m.	is A\$213m with addit	onal Stage 2			
Project economics	• Post-tax NPV _{8%} of A\$1,172m					
	• Post-tax IRR of 64%					
	• Payback period (post-tax) of <3	years				
	• EBITA of A\$3.6bn over life of mir	ne				
	• Total net cash flow of A\$2.3bn					
	• NPV/capital cost ratio of 5.3:1					
	• Revenue to cash cost ratio (R:C)	of 2.97				
	• Lowest zircon inducement price	of <us\$400 for="" nev<="" t="" td=""><td>w zircon proiects</td></us\$400>	w zircon proiects			
Project funding	With A\$119m of equity funding lo seeking funding for the remaining	ocked in place, the con g project debt.	npany is actively			
Other	Contact: Jozsef Patarica, CEO, Ka	albar Operations Pty L	.td.			
	jozsef.patarica@kalbarresources	.com.au				

CRITICAL MINERAL(S)	TITANIUM, ZIRCONIUM, RARE-EARTH ELEMENTS WA									
PROJECT NAME	COBURN MINERAL SANDS PROJECT									
Location	Located in the Shark Bay (Gascoyne) region of Western Australia, some 240 km north of the port city of Geraldton. Covering 1,200 km ² of a fossil coastline, which hosts a world-class heavy-mineral sand deposit.									
Company name	Strandline Resources Limited									
Company ownership	ASX-listed (STA) . Top five shareholders: Tembo Capital (37.6%), C&H Investments (7.3%), Gasmere/Hatch (4.9%), Pie Funds (4.4%), Perennial Value (3.7%).									
Project description	Coburn is a large advanced mineral sands project, with a high-value mineral suite, low-cost operation and strong financial returns.									
	• World-class proj sands export po	ect in W/ rt locate	A, great ju d approxii	risdiction, mately 240	close to G O km sout	ieraldton's h.	s mineral			
	• Conventional op backfill and full r	en-pit dr ehabilita	y mining i ition.	n free-dig	sand with	progressi	ve			
	• Mine life 22.5+ y mine life extensi	ears ore on by 15	reserve w years alor	ith scoping ng strike, t	g study co o 38 years	nfirming p 5.	otential			
	Proved processi	ng techn	ology with	n high mine	eral recove	eries.				
	• During initial ramp-up phase, a wet concentrate plant (WCP) will produce high-grade (95%) saleable heavy minerals concentrate (HMC) using high- capacity gravity separation and classification.									
	 Following commi will be processed magnetic fractic a premium zircor ilmenite product 	ng commissioning of the mineral separation plant (MSP), the HMC processed in the MSP using electrostatic separation, gravity and tic fractionation to produce a high-value product suite comprising ium zircon, zircon concentrate, rutile product and a chloride e product.								
	• Products are used in manufacture of ceramics (tiles, kitchen/bat fittings), TiO ₂ pigment (paint, plastics), titanium metal and rare-o									
	• First production within 18 months from project start.									
	• Coburn to gener	ate signi	ficant soc	io-econom	nic benefit	s.				
Expected products	Premium zircon p	roduct (6	56% ZrO ₂).							
	Zircon concentral	te produ	 ct (28% Zr	·O_, 7% TiO	and mor	azite).				
	Rutile-leucoxene	' product	(93% TiO).	2					
	Chloride grade ilmenite product (62% TiO_).									
Mineral inventory	JORC-compliant N	/ineral R	esources	(as at 14 N	ovember	2018):				
,						-				
	Percentage of total heavy metals									
	Resource category	Tonnes (Mt)	Total HM (%)	Ilmenite	Zircon	Rutile	Leuco- xene			
	Measured	119	1.3	45	24	5	6			
	Indicated	607 880	1.3	48 49	22	/ 7	5			
	Total	1,606	1.2	48	22	7	5			
	Contained (kt)		19,604	9,468	4,239	1,342	891			

Mineral inventory	JORC-compliant Ore Reserves (as at 16 April 2019):						
	Reserve category	Tonnes	Total				
		(Mt)	НМ				
	Proved	106	1.10				
	Probable	417	1.12				
	Total	523	1.11				
	Contained HM in-situ (kt)		5,828				
Stage of development	Coburn's updated feasibility study was completed on 4 June 2020 by range of experienced independent consultants. With key development approvals in place (including environmental, n leases (seven), native title and heritage agreements, and water extra licence), Coburn is now development ready. Strandline also owns the pastoral lease where the first 20 years of ore reserves lie.						
	Project financing and pre-construction activitie	s are well underv	rway.				
	Binding offtake agreements have been secured cor production with some of the world's leading consu and America.	vering 66% of Cob mers across Europ	f Coburn's Europe, China				
	Discussions are advancing with Northern Austra (NAIF) for potential debt funding of the project.	lia Infrastructur	e Facility				
	Coburn aligns strongly with Australian and WA government policies and strategic objectives, including Australia's critical minerals strategy, Australia's infrastructure plan, the Shark Bay Shire's economic prospectus and strategic community plan, as well as WA's state planning strategy 2050.						
	Targeting a final investment decision 2H 2020.						
Expected production	Mining at a rate of 23.4 Mtpa, with full mineral b separation onsite producing a suite of high-qual	eneficiation and ity mineral produ	ucts:				
	• Premium zircon (66% ZrO ₂): 34 l	ktpa					
	• Zircon concentrate (incl TiO ₂ + monazite): 54	ktpa					
	• Chloride-grade ilmenite (62% TiO ₂): 110	ktpa	a				
	• Rutile-leucoxene (93% TiO ₂): 24 l	ktpa					
Infrastructure	Coburn is situated in the key mining state of WA and benefits greatly from access to existing port, road. LNG gas and services infrastructure.						
Project development capital costs	Efficient pre-production capital expenditure of A\$260m including: open-pit mine, process facilities, accommodation village, site offices and buildings, bore field, roads, dams, waste facilities and contingency.						
Project economics	Key results from the June 2020 updated feasibi	lity study include	9:				
	• A\$705m pre-tax NPV _{8%} for first 22.5 years (A\$:US\$ 0.70)					
	• 37% pre-tax IRR, with first-quartile revenue: or	pex ratio of 2.4					
	• A\$2.3bn EBITDA of over the first 22.5 years of	reserves					
	• A\$104m average annual EBITDA						
	• 2.1 years payback period from first production						
	Coburn is poised for development, underpinned by c Tier-1 jurisdiction, exceptional products, strong cus margin returns over a long mine life.						
Project funding	Project funding is expected to comprise 60–709 equity (or similar) funding. Investor discussions	% senior debt and are welcomed.	d 30-40%				
Other	strandline.com.au						
	Coburn Information Memorandum.						

CRITICAL MINERAL(S)	TITANIUM, ZIRCO	NIUM				NSW			
PROJECT NAME	BALRANALD								
Location	Located in the northern Murray Basin in New South Wales.								
Company name	Iluka Resources I	_td							
Company ownership	ASX-listed (ILU)								
Project description	The Balranald Project comprises of the mining of the Balranald and Nepean deposits – two large, deep, high-grade rutile-rich deposits in northern Murray Basin, New South Wales.								
	Iluka has been working on an internally developed, innovative underground mining method to access the orebody more economically than through conventional means. The technology involves the use of directional drilling equipment to access the mineral sands ore, which is located below the water table.								
	A third trial to determine whether the mining technology is economically viable in a continuous mining and processing environment has been approved.								
	The mining operation will produce a heavy mineral concentrate (HMC). It is then planned that magnetic material will be sold or transported to Iluka's synthetic rutile kiln at Capel, Western Australia. Non-magnetic material is planned to be shipped to Iluka's Narngulu mineral separation plant (MSP) in Geraldton, Western Australia for final processing.								
	The mine will produce final products of zircon, rutile and ilmenite. ilmenite assemblage includes sulfate and chloride ilmenite. The cl ilmenite could be upgraded to synthetic rutile, subject to trial and outcomes and assuming adequate kiln capacity.								
Expected products	Zircon. Rutile. Ilmenite (sulfate and chloride, with chloride ilmenite potential synthetic rutile feedstock).								
Mineral inventory	Company ownership mineral resources as at 31 December 2016 (HM assemblage basis):								
	Resource category	Tonnes (Mt)	Total HM grade (%)	Ilmenite (%)	Zircon (%)	Rutile (%)			
	Nepean								
	Indicated	8.4	27.5	59.8	14.4	14.5			
	Inferred	0.8	11.2	57.3	14.6	14.0			
	Balranald				10.0	10.0			
	Measured	11.9	31.9	64.1	10.8	12.2			
	Indicated	19.9	35.1	64.3	11.3	12.2			
	Total	4.5 45 5	26.5	62.4	ರ.೨ 11 ೯	9.4 17 A			
	Contained (kt)	-	14.378	9.072	1.653	1.782			
	<u>Contained (kt)</u> 14,578 5,072 1,655 1,782								
	Notes:								
	1. In situ (dry) metric tonnage is reported.								
	2. Milleral assemblage is reported as a percentage of HM.								
	3. Rounding may gene	ale unierenc	es in the last dec	iniai piace.					

Stage of development	Updated feasibility stage.					
	Pre-production trials.					
	Subject to appropriate approvals and land access.					
Expected production	Expected annual production (post ramp-up average):					
	• Concentrate - ~180 ktpa - 200 ktpa					
	Resource assemblage:					
	•Zircon: ~13%					
	• Rutile: ~14%					
	•Ilmenite: ~73%					
	Expected production given above is per mining unit with the number of units being scalable.					
	Note the ilmenite assemblage includes sulfate and chloride ilmenite. The chloride ilmenite could be upgraded to synthetic rutile, subject to trial and study outcomes and assuming adequate kiln capacity.					
Infrastructure	Mining trial infrastructure in place.					
Project development	One mining unit: ~A\$80–100m					
capital costs	Additional mining unit: ~A\$55–75m					
	Capital estimate includes concentrator.					
Project economics	No figures available.					
Project funding	Internally funded from cash flow or available debt facilities.					
Other	iluka.com					
	Presentation to 2020 Bank of America Merrill Lynch Global Mining Conference					

ZIRCONIUM AND TITANIUM VIC								'IC		
AVONBANK MINERAL SANDS PROJECT										
Located in D Melbourne ir	Located in Dooen, near Horsham, approximately 300 km north-west of Melbourne in Victoria.							:		
WIM Resour	ce Pty L	td								
Private unlisted company										
Avonbank is a world-class zircon-rich heavy mineral san proved and probable reserves underpinning a 30-year n							nds project, with mine life.			
WIM will prod for export ov with minor ra	WIM will produce a high-quality heavy-mineral concentrate (HMC) at site, for export overseas, where mainly zircon and titanium will be produced, with minor rare-earth by-products.									
WIM has completed a test pit and demonstration-scale wet concentral plant at site, demonstrating successfully that the Avonbank ore is very amenable to standard mineral sands gravity separation using spirals.							entratior s very als.	ı		
The Avonbank orebody is consistent and the topography is flat, ma it very amenable to standard dry mining and a moving-hole, rapid- rehabilitation mining approach.						, making bid-	I			
Avonbank has existing rail at site and power and surface water pipe nearby to the proposed process plant – meaning a lower capital expenditure and simple project start-up and operation.							pipeline I	S		
Avonbank will produce an average of 400,000–500,000 p.a of heavy mineral concentrate at site – comprising on average 30% zircon, 55% titanium and 3–5% rare-earth by-products.										
Mineral resources as at 31 December 2016 (HM assemblage basis):										
				Percenta	ae of to	tal heav	v metals	;		
Resource category	Tonnes (Mt)	Total HM (%)	Zircon	Rutile	Leuco- xene	llme- nite	Monz- anite	Xeno time		
Measured	300	4.3	20	15	8.5	26	2.0	0.6		
Indicated	150	3.6	19	17	9.3	28	1.9	0.6		
Inferred	40	3.0	21	16	9.0	27	2.3	0.6		
Total	490	4.0	20	16	8.8	27	2.0	0.6		
Contained (kt) 19,600 3,920 3,136 1,725 5,292 3							392	118		
	ZIRCONIUM AVONBANK Located in D Melbourne in WIM Resour Private unlis Avonbank is proved and p WIM will proof for export of with minor ra WIM has complant at site, amenable to The Avonbank it very amen rehabilitatio Avonbank has nearby to th expenditure Avonbank win mineral cond titanium and Mineral reso Resource category Measured Indicated Inferred Total Contained	ZIRCONIUM AND TIT AVONBANK MINERA Located in Dooen, ne Melbourne in Victoria WIM Resource Pty L Private unlisted com Avonbank is a world- proved and probable WIM will produce a hi for export overseas, with minor rare-eart WIM has completed a plant at site, demonstianenable to standard The Avonbank oreboit very amenable to standard The Avonbank oreboit very amenable to standard Avonbank has existin nearby to the propositive and sime Avonbank will produce Mineral resources as Resource Tonnest (Mt) Measured Mineral resources as Contained (kt)	ZIRCONIUM AND TITANIUMAVONBANK MINERAL SANDSLocated in Dooen, near Horsh Melbourne in Victoria.WIM Resource Pty LtdPrivate unlisted companyAvonbank is a world-class zing proved and probable reservesWIM will produce a high-quali for export overseas, where m with minor rare-earth by-proWIM has completed a test pit a plant at site, demonstrating sid amenable to standard mineral The Avonbank orebody is com it very amenable to standard rehabilitation mining approad Avonbank has existing rail at nearby to the proposed proce expenditure and simple projeAvonbank will produce an ave mineral concentrate at site - titanium and 3-5% rare-earthMineral resources as at 31 DeResource categoryTonnes (Mt)Total HM (%)Measured 403004.3Indicated 1503.6Inferred403.0Total4904.0	ZIRCONIUM AND TITANIUMAVONBANK MINERAL SANDS PROJELocated in Dooen, near Horsham, appMelbourne in Victoria.WIM Resource Pty LtdPrivate unlisted companyAvonbank is a world-class zircon-rich proved and probable reserves underpWIM will produce a high-quality heavy for export overseas, where mainly zir with minor rare-earth by-products.WIM has completed a test pit and dem plant at site, demonstrating successfu amenable to standard mineral sands gThe Avonbank orebody is consistent. it very amenable to standard dry min rehabilitation mining approach.Avonbank has existing rail at site and nearby to the proposed process plant expenditure and simple project startAvonbank will produce an average of mineral concentrate at site – comprist itanium and 3–5% rare-earth by-proMineral resources as at 31 DecemberMeasured 3004.3Au20Indicated1503.619Inferred40403.021Total4904.0200Contained (kt)19,6003,920	ZIRCONIUM AND TITANIUMAVONBANK MINERAL SANDS PROJECTLocated in Dooen, near Horsham, approximate Melbourne in Victoria.WIM Resource Pty LtdPrivate unlisted companyAvonbank is a world-class zircon-rich heavy mi proved and probable reserves underpinning a 3WIM will produce a high-quality heavy-mineral for export overseas, where mainly zircon and the with minor rare-earth by-products.WIM has completed a test pit and demonstration plant at site, demonstrating successfully that the amenable to standard mineral sands gravity sepThe Avonbank orebody is consistent and the t it very amenable to standard dry mining and a rehabilitation mining approach.Avonbank has existing rail at site and power ar nearby to the proposed process plant – meani expenditure and simple project start-up and o Avonbank will produce an average of 400,000 mineral concentrate at site – comprising on av titanium and 3–5% rare-earth by-products.Mineral resources as at 31 December 2016 (HM Measured 300Measured 3004.32015Indicated 1503.61917Inferred403.02116Total4904.02016Contained (kt)19,6003,9203,136	ZIRCONIUM AND TITANIUM AVONBANK MINERAL SANDS PROJECT Located in Dooen, near Horsham, approximately 300 k Melbourne in Victoria. WIM Resource Pty Ltd Private unlisted company Avonbank is a world-class zircon-rich heavy mineral samp roved and probable reserves underpinning a 30-year WIM will produce a high-quality heavy-mineral concent for export overseas, where mainly zircon and titanium with minor rare-earth by-products. WIM has completed a test pit and demonstration-scale w plant at site, demonstrating successfully that the Avonb amenable to standard mineral sands gravity separation or The Avonbank orebody is consistent and the topograp it very amenable to standard dry mining and a moving-rehabilitation mining approach. Avonbank has existing rail at site and power and surface nearby to the proposed process plant – meaning a low expenditure and simple project start-up and operation of the proposed process plant – meaning a low expenditure and simple project start-up and operation of the proposed process plant – meaning a low expenditure and simple project start-up and operation of the proposed process plant – meaning a low expenditure and simple project start-up and operation of the proposed process plant – meaning a low expenditure and simple project start-up and operation of the proposed process plant – meaning a low expenditure and simple project start-up and operation of the proposed process plant – meaning a low expenditure and simple project start-up and operation of the proposed process plant – meaning a low expenditure and simple project start and the top operation of the proposed process plant – meaning a low expenditure and 3–5% rare-earth by-products.	ZIRCONIUM AND TITANIUM AVONBANK MINERAL SANDS PROJECT Located in Dooen, near Horsham, approximately 300 km north Melbourne in Victoria. WIM Resource Pty Ltd Private unlisted company Avonbank is a world-class zircon-rich heavy mineral sands proje Avonbank is a world-class zircon-rich heavy mineral concentrate (HM for export overseas, where mainly zircon and titanium will be proved and probable reserves underpinning a 30-year mine life WIM will produce a high-quality heavy-mineral concentrate (HM for export overseas, where mainly zircon and titanium will be provided a test pit and demonstration-scale wet concerplant at site, demonstrating successfully that the Avonbank ore is amenable to standard mineral sands gravity separation using spir The Avonbank orebody is consistent and the topography is flat it very amenable to standard dry mining and a moving-hole, raprehabilitation mining approach. Avonbank has existing rail at site and power and surface water nearby to the proposed process plant – meaning a lower capita expenditure and simple project start-up and operation. Avonbank will produce an average of 400,000–500,000 p.a of mineral concentrate at site – comprising on average 30% zircor titanium and 3–5% rare-earth by-products. Mineral resources as at 31 December 2016 (HM assemblage based and and are single project start-up and operation. Resource Tonnes Total Zircon Rutile Leuco- Ilme- Mineral resources as at 31 December 2016	ZIRCONIUM AND TITANIUM V AVONBANK MINERAL SANDS PROJECT Located in Dooen, near Horsham, approximately 300 km north-west of Melbourne in Victoria. WIM Resource Pty Ltd Private unlisted company Avonbank is a world-class zircon-rich heavy mineral sands project, with proved and probable reserves underpinning a 30-year mine life. WIM will produce a high-quality heavy-mineral concentrate (HMC) at sit for export overseas, where mainly zircon and titanium will be produced with minor rare-earth by-products. WIM has completed a test pit and demonstration-scale wet concentration plant at site, demonstrating successfully that the Avonbank ore is very amenable to standard mineral sands gravity separation using spirals. The Avonbank orebody is consistent and the topography is flat, making it very amenable to standard dry mining and a moving-hole, rapid-rehabilitation mining approach. Avonbank has existing rail at site and power and surface water pipeline nearby to the proposed process plant – meaning a lower capital expenditure and simple project start-up and operation. Avonbank will produce an average of 400,000–500,000 p. a of heavy mineral concentrate at site – comprising on average 30% zircon, 55% titanium and 3–5% rare-earth by-products. Mineral resources as at 31 December 2016 (HM assemblage basis): Percentage of total heavy metals Measured 300 4.3 20 15 8.5 26 2.0 Indicated 150 3.6 19		

_

Mineral inventory	Ore reserves as at 1 June 2018 (HM assemblage basis):								
	Percentage of total heavy metals								
	Reserve category	Tonnes (Mt)	Total HM (%)	Zircon	Rutile	Leuco- xene	IIIme- nite	Monz- anite	Xeno- time
	Proved	220.4	4.4	20.2	14.9	8.4	26.4	2.0	0.6
	Probable	91.4	4.0	19.3	16.9	9.1	285.0	2.0	0.6
	Total	311.8	4.3	19.9	15.4	8.6	27.0	2.0	0.6
	Contained	(kt)	13,407	2,668	2,065	1,153	3,620	268	80
Stage of development	With a pre-feasibility study completed in 2018, Avonbank is now in the feasibility study and approvals stage. The feasibility study is well advanced and will be underpinned via a recently completed test pit and a pilot-scale demonstration wet concentration plant.								
Expected production	WIM propose	es to pro	duce on	average	:				
	• Ore mined and processed: 10-12 Mtpa								
	• HM concentrate: 400 ktpa								
	• Contained zircon: 80,000-120,000 tpa								
	Contained titanium minerals: 150,000-200,000 tpa								
	 Associated 	monazit	e and xe	notime:	5,000 -	7,500 tp	ba		
Infrastructure	Avonbank has existing rail and loading terminal adjacent to the proposed process plant and central to the mine footprint. Existing surface water pipelines run nearby to the mine site, and existing high-voltage power supply lines run into the project area.								
Project development capital costs	Available on request.								
Project economics	Available on request.								
Project funding	The company welcomes discussion regarding financing of the project.								
Other	wimresource	e.com.au							
	Michael Winternitz, Project Director: admin@wimresource.com.au								

Tungsten (W)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	U	nits	Contained (kt)	Page
Tungsten	Kara	Tasmania Mines Ltd	Operating	W	36.3	0.06	%	WO_3	20	-
Tungsten	Mt Carbine – Tailings	Speciality Metals Int. Ltd	Operating	W	2.0	0.11	%	WO ₃	2	-
Tungsten	Mt Carbine – Hard Rock	Speciality Metals Int. Ltd	Construction	W	47.3	0.13	%	WO ₃	61	-
Tungsten	Mt Carbine – LGO	Speciality Metals Int. Ltd	Construction	W	18.0	0.08	%	WO ₃	14	-
Tungsten	Dolphin	King Island Scheelite Ltd	Pre-const	W	9.6	0.90	%	WO ₃	86	144
Tungsten	Watershed	Tungsten Mining NL	FS	W	20.7	0.25	%	WO ₃	51	146
Tungsten	Mount Lindsay	Venture Minerals Ltd	FS	Sn, W, Cu, Fe	13.5	0.20	%	WO ₃	26	148
Tungsten	Molyhil	Thor Mining PLC	FS	WO3, Mo	4.7	0.28	%	WO ₃	13	150
Tungsten	O'Callaghans	Newcrest Mining Ltd	PFS	W	78.0	0.33	%	WO ₃	257	-

Advanced tungsten projects (total mineral resource tonnage, grade and contained mineral)

CRITICAL MINERAL(S)	TUNGSTEN T/					
PROJECT NAME	DOLPHIN					
Location	The Dolphin Project is located near the town of coast of King Island, Tasmania, in the Bass Strai to service the Dolphin Mine, which produced tun 1992.	The Dolphin Project is located near the town of Grassy on the south-east coast of King Island, Tasmania, in the Bass Strait. Grassy was developed to service the Dolphin Mine, which produced tungsten between 1917 and 1992.				
Company name	King Island Scheelite Ltd – owns 100% of Dolph	nin Project				
Company ownership	ASX-listed (KIS) – approximately 670 sharehold	ASX-listed (KIS) – approximately 670 shareholders.				
	Top 20 shareholders own approximately 75%.					
Project description	Between 1917 and 1990, the Dolphin Mine, toge Bold Head Mine, mined some 10 Mt of tungsten which was processed into a concentrate prior to conducted by both open-cut and underground n	ther with the a ore at 0.67% W exporting. Mi nethods.	ndjacent VO ₃ , ning was			
	The current redevelopment plan of the Dolphin by open-cut methods, approximately 400,000 to 0.73% WO_3 , over eight years.	Project envisaged of ore p	ges mining, per year, at			
	This project hosts the highest-grade known tungsten reserve outside China. Tungsten is ranked as a critical mineral, being a key input to industries vital to national security and in light of supply risk, given China's dominance of the tungsten market.					
	Ore will be crushed and processed, primarily through a gravity circuit, supplemented by a simple flotation circuit to produce a tungsten concentrate for export through the Port of Grassy, less than 1 km away.					
	This redevelopment plan has been fully approved by both Mineral Resources Tasmania and the Environment Protection Authority.					
	The opportunity exists to also mine the adjacent Bold Head resource, both as open-cut and underground, as well as the Dolphin underground resource, thus extending the project life by approximately 10 years.					
Expected products	Tungsten concentrate – 65% WO ₃ – gravity circu	uit.				
	Tungsten concentrate – 50% WO ₃ – flotation cir	ation circuit.				
Mineral inventory	Mineral resources (as at September 2019):					
	Resource category	Tonnes (Mt)	WO ₃ (%)			
	Indicated	11.21	0.90			
	Contained WO ₃ tonnes 102,480					
	Ore reserves (as at July 2019):					
	Reserve category	Tonnes	WO ₃			
		(Mt)	(%)			
	Probable	3.0	0.73			
	Contained WO ₃ tonnes		-22,000			
Stage of development	The Dolphin Project feasibility study for the red cut mine was completed in June 2019.	evelopment of	the open-			

Stage of development	All significant approvals have been grante currently in progress.	ed, with operational plans			
	The company has a signed offtake agreement in place with Wolfram Bergbau und Hutten AG, a subsidiary of the Sandvik Group. The contract is for a total of 1,400 tonnes WO_3 over a four-year period, 20% of proposed annual production.				
	Negotiations on further offtake contract paratungstate (APT) producers are at an	s with other ammonium advanced stage.			
	It is anticipated that once the offtake agree it would take approximately 15 months to project.	eements and financing are finalised, construct and commission the			
	Discussions regarding financing via debt	and equity are ongoing.			
Expected production	Expected annual production (post ramp-up average):				
	• Ore mined and processed:	400,000 tpa			
	• Tungsten concentrate:	3,300 tpa			
	• WO ₃ in concentrate:	2,150 tpa (215,000 mtu)			
Infrastructure	King Island is self-sufficient in terms of powe an upgrade to accommodate the redevelop are well advanced with the local utility to fin	er; however, the network will require ment of the project. Discussions alise a supply agreement.			
	The principal source of water will be from the Lower Grassy Dam, situated on project property; however, alternative backup sources have been identified in the event of a prolonged dry spell.				
	There is a good network of roads leading fr well as access to the port, substantially rec requirements.	om Grassy to the project, as ducing capital expenditure			
Project development	Anticipated development capital costs can be broken down broadly into:				
capital costs	Mobile mining equipment:	A\$14.0m			
	Processing plant:	A\$42.0m			
	Site services and other infrastructure:	A\$9.0m			
	Total:	A\$65.0m			
	Additional funding of approximately A\$10m will be required for working capital.				
Project economics	The 2019 feasibility study demonstrated the Dolphin Project has robust economics including:				
	Pre-tax and pre-gearing NPV _{8%} :	A\$146m			
	Internal rate of return:	47%			
	Capital payback:	2.75 years			
	Tungsten recovery:	77%			
	Operating costs (per MTU WO ₃ produced): A\$129 (US\$84)			
Project funding	The company continues to seek investme debt funding or equity funding. It has no any, or a combination, of the options.	ent funds by way of joint venture, restrictive covenants, preventing			
Other	Company website: kingislandscheelite.co	m.au			
	Investor presentation: kingislandscheelite.co KIS-Investor-Presentation-Dolphin-Project-	m.au/wp-content/uploads/2019/09/ September-2019.pdf			
	johann.jacobs@kisltd.com.au				

CRITICAL MINERAL(S)	TUNGSTEN		QLD		
PROJECT NAME	WATERSHED				
Location	Located 130 km north of Cairns in Far North Qu	eensland.			
Company name	Tungsten Mining NL				
Company ownership	ASX-listed (TGN)				
	Tungsten Mining NL is an Australian-based reso primary focus is the exploration and developme Australia. Major shareholders include public con individuals and institutional investors.	ources company ent of tungsten npanies, high-n	/ whose projects in et-worth		
Project description	The Watershed Project is well positioned for development, with producing tungsten concentrate for the ammonium paratungst market over a 10-year project life.				
	The project will be developed as an open-pit wit then excavator and truck.	h mining by dril:	ll and blast,		
	There will be 2.5 Mtpa of ore processed on site t crushing, X-ray transmission ore sorting, rod mi with spirals, ball milling and flotation.	There will be 2.5 Mtpa of ore processed on site through a circuit containing crushing, X-ray transmission ore sorting, rod milling, gravity separation with spirals, ball milling and flotation.			
	Tungsten concentrate produced will contain >65% WO ₃ with very of contaminants, making it attractive to APT producers. The con will be trucked to Townsville for export.				
Expected products	Tungsten concentrate – >65% WO ₃ .				
Mineral inventory	Mineral resources at 0.05% WO $_{_3}$ cut-off (as at 1	8 July 2018):			
	Resource category	Tonnes (Mt)	WO₃ (%)		
	Measured	9.47	0.16		
	Indicated	28.36	0.14		
	Inferred	11.49	0.15		
	Total	49.32	0.14		
	Contained WO ₃ (kt)		70.4		
	Ore reserves (as at 31 July 2014):				
	December este com/	Tannag	14/0		
	Reserve category	(Mt)	w0 ₃ (%)		
	Proved	6.4	0.16		
	Probable	15.0	0.14		
	Total	21.3	0.15		
	Contained WO ₃ (kt)		31.4		

Stage of development	Feasibility study completed in 2014 by previous owners, which defined the scope, design features and economic viability of the Watershed Project.				
	The project is well positioned for development, with all necessary environmental and traditional owner approvals in place, including seven mining leases covering a total area of 1,904 hectares that are valid until 1 December 2033.				
Expected production ¹	• Mining rate:	10 Mtpa			
	• Design process throughput:	2.5 Mtpa			
	• Tungsten concentrate:	~4,800 tpa			
	• Contained $WO_{_3}$ in concentrate:	2,500 tpa			
Infrastructure ¹	The project is accessible by means of a 24 km formed and grad unsealed access road running from the state-controlled dual-l Highway.				
	A state-owned powerline runs pa the line currently has excess cap requirements.	rallel to the Mulligan Highway, and acity which would meet the project's			
	Due to the history of mining in the region, there is access to skille workers from the town of Mareeba and also from the Cairns/Port region.				
Project development capital costs ¹	A\$171m				
Project economics ^{1,2}	• NPV (pre-tax):	A\$107.5m			
	• IRR (pre-tax):	21.2%			
	• EBITDA per annum (average):	A\$41.4m			
	• Free cash flow (pre-tax):	A\$253.1m			
	• Payback from first production:	3.1 years			
Project funding	The company is assessing options for the future development of the project and welcomes enquiries from potential offtake and financing partners.				
Other	tungstenmining.com				
	Notes:				
	1. As per DFS dated February 2015.	ide an average ADT price of LIS\$275/mty			
	AUD:USD FX rate of 0.80 and debt-to-e	equity ratio of 70%:30%.			

CRITICAL MINERAL(S)	TUNGSTEN TAS						
PROJECT NAME	MOUNT LINDSAY						
Location	Located in north-wester	Located in north-western Tasmania.					
Company name	Venture Minerals Ltd						
Company ownership	ASX-listed (VMS)						
	Venture Minerals owns 10	00% of the Mo	unt Lindsay	/ Project.			
Project description	Mount Lindsay is an adva within the world-class we hosting the Renison Bell mine. The project has acc hydropower, water, seale	nced tin-tungs est coast of Tas tin mine and th cess to existing d roads, rail an	sten-magne smania tin- ne high-grad g infrastruc d port facil	etite project tungsten pr de King Islar ture, includ ities.	t located rovince, nd tungsten ing		
	Venture Minerals plans to and copper-bearing ore in progressing to an underg towards the end of the n	o extract 1.75 M nitially from a c ground mine to ine-year mine l	Mtpa of tin, convention; access dee ife.	, tungsten, r al open-pit r eper minera	nagnetite nine, lisation		
	Venture has completed over 83,000 m of diamond core drilling within its two high-grade orebodies defining a tin-tungsten res- containing over 110,000 tonnes of metal. This work, along with engineering, environmental, hydrogeological and metallurgical culminated in a feasibility study completed in November 2012. The process plant consists of crushing and grinding circuits, m concentration, copper and a bulk sulphide flotation circuit, tin and flotation circuits, and scheelite flotation followed by an an paratungstate (APT) circuit. The process plant will produce tin and copper concentrates and APT, which will be trucked to the Burnie for export to Asia and/or Europe.				g, source h extensive l studies,		
					ts, magnetite a, tin gravity an ammonium e tin, magnetite o the Port of		
	Venture has a large resource base to draw on and is now looking number of strategies to optimise the higher-grade portions at Lindsay. Additionally, the company has focused efforts on iden further high-grade tin-tungsten targets in close proximity with electromagnetic survey confirming 12 priority targets						
Expected products	Tin concentrate (45% – 5	0% Sn).					
	APT with an option to pro	oduce tungstei	n concentra	ate (65% W0	⊃ ₃).		
	Iron (magnetite) concentrate (65% Fe).						
	Copper concentrate (~24% Cu).						
Mineral inventory	Mineral resources at 0.4	5% SnEq cut-of	f (as at 17 (October 20	12):		
	Resource category	Tonnes	WO₃	Sn	Cu		
		(Mt)	(%)	(%)	(%)		
	Measured	4.3	0.20	0.30	0.10		
	Indicated	5.2	0.20	0.30	0.10		
	Inferred	3.9	0.10	0.30	0.10		
	Total	13.0	0.20	0.30	0.10		
	Contained (kt)		26	38	13		

Mineral inventory	At a lower 0.2% SnEq cut-off grade, the total resource increases to over 110 kt of contained Sn + WO_3 + Cu.						
	Ore reserves (as at 7 November 2012):						
	Reserve category	Tonnes (Mt)	WO₃ (%)	Sn (%)	Cu (%)		
	Proved	6.4	0.20	0.20	0.10		
	Probable	7.3	0.10	0.20	0.10		
	Total	14.0	0.10	0.20	0.10		
	Contained (kt)		16	30	14		
	Resources and reserves grade of 65% Fe.	also contain 15	% mass rec	overy of irc	on with a		
Stage of development	A feasibility study was co November 2012 and the	ompleted on th mining lease w	e Mount Li as granted	ndsay Proje in July 2014	ct in 1.		
	A draft Development Proposal and Environmental Managemen been submitted to the Environment Protection Authority (EPA predominantly open-pit mine, though Venture is now assessing of mining high-grade solely from underground, with a significan environmental footprint.						
Expected production	Expected annual produc	tion (post ram	p-up averag	ge):			
	Ore mined and processe	d: 1.75 Mtpa					
	Tin concentrate:	5,000 tpa f	or 2,350 tp	a containec	ed tin		
	ATP:	1,500 tpa					
	Magnetite concentrate:	240,000 tp	a				
	Copper concentrate:	3,500 tpa f	or 800 tpa	contained c	copper		
Infrastructure	The project is located be River magnetite mine, ar hydropower, water, seale	tween the Ren nd has access t ed roads, and ra	ison Bell tir o existing ir ail and port	n mine and t nfrastructu facilities.	he Savage re including		
Project development capital costs	A\$198m (2012 estimate)).					
Project economics	Key results from the 201	.2 feasibility st	udy include	:			
	• total life-of-mine sales	revenue of A\$1	.,435m				
	• total life-of-mine cash g	generation of A	\$554m				
	• pre-tax NPV _{8%} of A\$143	ßm					
	• pre-tax IRR of 21%						
	• pre-tax internal rate of	return of 33%					
	• payback period of 4 yea	ars					
	• operating cost per tonr	ne of A\$59 incl	uding royalt	cies.			
	Commodity prices and exchange rate used are: T=tin US\$23,800/t, tungsten US\$392/mtu WO ₃ , magnetite (62% Fe) US\$125/t, copper US\$8,000/t and an exchange rate of USD:AUD = \$0.90.						
Project funding	The company welcomes construction and/or offt	discussion rega ake.	arding finar	ncing of the	project		
Other	ventureminerals.com.au						

CRITICAL MINERAL(S)	TUNGSTEN NT						
PROJECT NAME	MOLYHIL						
Location	Located 220 km north- Northern Territory.	Located 220 km north-east of Alice Springs (320 km by road) in the Northern Territory.					
Company name	Thor Mining PLC						
Company ownership	ASX- and AIM-listed (TI	HR)					
Project description	An open-pit tungsten/molybdenum project with mineralisation from su						
	 The project has a seven-year life as an open pit, along with likely production from JORC 2012 tungsten and copper resources at approximately 30 km from Molyhil, and followed by undergroun Molyhil of known resource extensions. Mining and processing activities onsite will produce tungsten, molybdenum and copper concentrates for sale using industry-se flotation processing techniques. 						
Expected products	Tungsten concentrate	(65% WO ₃).					
	Molybdenum concentra	ate (51.4% Mo)	•				
	Copper concentrates (r	ninor).					
Mineral inventory	Molyhil mineral resources (as at 10 October 2019):						
	Resource category 100% Thor	Tonnes (Mt)	WO ₃ (%)	Мо (%)	Cu (%)		
	Indicated	3.8	0.29	0.14	0.05		
	Inferred	0.9	0.25	0.15	0.04		
	Total	4.7	0.28	0.14	0.05		
	Contained (kt)1372Bonya Tungsten mineral resources (as at 29 January 2020):						
	Resource category 40% Thor		Tonnes (Mt)	WO₃ (%)	Cu (%)		
	Inferred		0.74	0.21	0.09		
	Total		0.74	0.21	0.09		
	Contained (kt)			1.5	0.6		
	Molyhil ore reserves (as at 8 January 2018):						
	Reserve category 100% Thor		Tonnes (Mt)	WO ₃ (%)	Mo (%)		
	Probable		3.5	0.29	0.12		
	Contained (kt)			10	4		
Stage of development	Updated feasibility stu	dy completed i	in August 20	018.			
	Environmental and trac	litional owner	approvals a	re in place.			
	In 2013, Thor received a letter of intent from US-based Global Tungsten and Powders Corp, for purchase of 70–75% of tungsten concentrates produced from Molyhil over the life of the mine.						

Stage of development	Next steps are to secure offtake agreements for the balance of tungsten and molybdenum concentrates, and finance to support the development of the Molyhil Project.				
	Once finance is secured, the construction and development phase is expected to take approximately 12 months.				
Expected production	Expected annual production (Years 1–7 averag	e):			
(excluding underground and satellite deposits)	• Mine ore production: 0.59 Mtpa				
	• Processing plant throughput: 0.53 Mtpa				
	• Tungsten concentrate: 1,850 tpa				
	• Molybdenum concentrate: 850 tpa				
	• WO ₃ in concentrate: 1,204 tpa				
	• Mo in concentrate: 433 tpa				
Infrastructure	The partially sealed Plenty Highway runs within 25 km of the site and connects to the Northern Territory's major arterial road, the Stuart Highway. Like the Stuart Highway, the Adelaide-to-Darwin railway provides modern transport connections between Alice Springs and the ports of Darwin and Adelaide. The project has ample water from nearby underground aquifers. Molyhil will operate as a fly-in, fly-out operation with provision for camp and electricity-generation facilities provided for within the cost estimates of the current feasibility study.				
Project development	A\$69m (US\$43m) low start-up capital cost:				
capital costs		A\$m			
	Process plant	28			
	Infrastructure	15			
	Mining fleet	7			
	Owners costs/rehabilitation bonds	7			
	Engineering	6			
	Contingency	6			
	Total	69			
Project economics	The August 2018 updated feasibility study pro A\$101m NPV and a 1.5-year payback period bas and a 7 year mine life with average annual prod (1,204 t) contained WO ₃ in concentrate (1 mtu were projected at US\$90/mtu, compared with tungsten prices at the time of US\$300/mtu.	jected a 59% IRR, sed on a A\$69m capital cost luction of 120,400 mtu = 10 kg). Operating costs the global spot price for			
	es and exchange rates have the second quartile of global rce has been upgraded, prporating copper, while o been defined.				
Project funding	The company is seeking project loan finance, e the company and/or joint venture participation agreements to progress the development of th	quity investment in n, and product offtake ne Molyhil Project			
Other	Company website: thormining.com				
	Project presentation: thormining.com/sites/thormining/media/pdf/ interviews/molyhil-202002.pdf				

Vanadium (V)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	U	nits	Contained (kt)	Page
Vanadium	Windimurra	Atlantic Ltd	Pre-const	V	234.0	0.49	%	V ₂ O ₅	1,146	154
Vanadium	Balla Balla	BBI Group Pty Ltd	FS	V, Ti	455.9	0.66	%	V ₂ O ₅	2,988	-
Vanadium	Barrambie	Neometals Ltd	FS	Ti, V	280.1	0.44	%	V ₂ O ₅	1,234	132
Vanadium	Gabanintha	Technology Metals Au Ltd	FS	V, Ti	131.0	0.80	%	V ₂ O ₅	1,179	156
Vanadium	Mount Peake	TNG Ltd	FS	V, Ti, Fe	160.0	0.28	%	V ₂ O ₅	448	158
Vanadium	Richmond – Julia Creek	Horizon Minerals; RVT	PFS	V, Mo, Ni	1,838.0	0.36	%	V ₂ O ₅	6,650	160
Vanadium	Australian Vanadium Project	Australian Vanadium Ltd	PFS	V, Ti	208.2	0.74	%	V ₂ O ₅	1,541	162
Vanadium	Saint Elmo	Multicom Resources	PFS	V, Mo	304.5	0.25	%	V ₂ O ₅	762	164
Vanadium	Medcalf	Audalia Resources Ltd	PFS	V, Ti	32.0	0.47	%	V ₂ O ₅	149	-
Vanadium	Wiluna	Toro Energy Ltd	PFS	U, V	96.3	0.03	%	V ₂ O ₅	31	-
Vanadium	Bigrlyi	Energy Metals Ltd	PFS	U, V	7.5	0.12	%	V ₂ O ₅	9	_

Advanced vanadium projects (total mineral resource tonnage, grade and contained mineral)

Barrambie project summary included in the titanium section.

CRITICAL MINERAL(S)	VANADIUM WA					
PROJECT NAME	WINDIMURRA					
Location	The Windimurra Project is located 80 km east of West region of Western Australia.	The Windimurra Project is located 80 km east of Mount Magnet in the Mid West region of Western Australia.				
Company name	Atlantic Vanadium Pty Ltd (AVPL)					
Company ownership	AVPL is part of the Salim Group, one of Indonesi AVPL owns 100% of the Windimurra Project.	a's largest con	glomerates.			
Project description	Windimurra will be the world's next major primary vanadium produ leveraging significant existing infrastructure at the project site. In particular, Windimurra enjoys the following competitive advantag					
	• significant historic investment, making it the lowest capital intensity primary vanadium project development in the world					
	• all development approvals in place					
	• JORC 2012–compliant reserves deliver initial 3 through additional large JORC 2012 resources	1-year mine life	e with upside			
	• all critical infrastructure already developed (ro kiln, power station)	all critical infrastructure already developed (roads, mine pit, gas pipeline, xiln, power station)				
	• attractive economics based on low strip ratio, legacy investments mine life					
	• attractive market fundamentals with forecast growth driven by new Chinese rebar standards	strong vanadi and battery d	rong vanadium demand Id battery demand.1			
	The Windimurra Project will produce a high-purity V_2O_5 flake production utilising proven open-cut mining and vanadium production proces including ore milling, magnetic separation, salt roasting, leaching a furnace processing to produce the final product.					
	¹ Vanadium industry reports					
Expected products	Approximately 7,600 tonnes per annum of high-purity V ₂ O ₅ flake. The high-quality product ensures access to the steel and premium vanadium chemical/battery markets.					
Mineral inventory	JORC 2012 Mineral Resources (as at 30 April 20	20):				
	Resource category	Tonnes	V ₂ O ₅			
		(Mt)	(%)			
		34.6	0.49			
	Inferred	51.6	0.50			
	Total	209.7	0.50			
	Contained (kt)					
	JORC 2012 Ore Reserves (as at 30 April 2020):					
	Reserve category	Tonnes (Mt)	V ₂ O ₅ (%)			
Probable 87.5 0						
	Total	87.5	0.49			
	Contained (kt)		429			

Stage of development	AVPL completed a feasibility study for the Windimurra Project development in April 2020. The Windimurra Project is 'shovel ready' with all environmental and mining approvals in place.				
	The construction period for the project development is approximately 14 months and a first-class contractor is planned to be engaged for the design, construction and commissioning of the process plant, under a guaranteed maximum price construction contract with a process warranty for plant performance.				
Expected production	Summary operating metrics for Windimurra Project are set out below (steady state averages post ramp-up).				
	Life of mine	Years	31		
	Mine strip ratio	Waste:ore	1:1	_	
	Ore grade	% V ₂ O ₅	0.49	_	
	Mill throughput	Mtpa	2.8		
	Kiln throughput	Mtpa	0.8	_	
	V_2O_5 production	tpa	7,608	-	
Infrastructure	Windimurra is the only with significant infrast roasting kilns in the wo and is served by the ex	existing vanadiur ructure already ir rld, a 24 MW pow isting Mid West G	m production fac n place, including ver station and a Gas Pipeline.	ility in Australia one of the largest 290-room village,	
Project development capital costs	A\$213m				
Project economics	The Windimurra Project cash flows of A\$91.8m	is forecast to del per annum at long	iver strong stead -term average va	y state pre-tax free nadium prices.	
Project funding	AVPL is currently in advanced discussions with prospective project financiers and strategic offtake partners for the Windimurra Project development; however, it welcomes interest from other project financiers and offtake partners.				
Other	atlanticptyltd.com.au				
	More detailed information is available in the Windimurra data room on execution of an appropriate confidentiality agreement with AVPL. Enquiries should be directed to Tony Veitch, Executive Director Phone: +61 8 6141 7100, Email: tveitch@atlanticptyltd.com.au				

CRITICAL MINERAL(S)	VANADIUM WA							
PROJECT NAME	GABANINTHA							
Location	Located approximately 40 km south-east of Meekatharra, 650 km north- east of Perth in the Mid West region of Western Australia.							
Company name	Technology Metals Australia Ltd							
Company ownership	ASX-listed (TMT)							
Project description	 Gabanintha is one of the highest-grade V-Ti-Fe deposits in the world with resource of 131 Mt at 0.9% V₂O₅, containing a high-grade component of 71.2 Mt at 1.1% V₂O₅. The coarse grain size and very low impurities of the high-grade ore result in a very high-purity premium (>99%) V₂O₅ product with forecast lowest quartile operating costs. The proposed production scale will make the project the largest single primary vanadium producer the world. The high-grade orebody outcrops, with mining to be by conventional open-pit methods with ore from surface and a low strip ratio. Processing will be completed onsite and consists of a magnetite beneficiation stage to produce a magnetic concentrate, and salt roasting of the magnetic concentrate to convert the vanadium to a soluble form, followed by wate leaching and subsequent precipitation to produce a high-purity vanadium pentoxide product. The current reserve of 29.6 Mt at 0.88% V₂O₅ support an initial long mine life of at least 16 years, with significant scope within the super life of at least 16 years. 							
	Final product, suitable fo and chemical markets, is 20-foot shipping contain	r the steel ind to be packed i ers for export	lustry, vana in drums an t from the F	adium redox fl Id transported Port of Fremai	ow battery d in standard ntle.			
Expected products	High-purity vanadium pentoxide (V_2O_5) +99% purity.							
	Scope to produce a mixed base metal – Co-Cu-Ni concentrate from tailings stream.							
Mineral inventory	Mineral resources (as at N	March 2019):						
	Resource category	Tonnes (Mt)	V ₂ O ₅ (%)	TiO ₂ (%)	Fe (%)			
	Measured	1.2	1.00	11.40	44.70			
	Indicated	28.9	0.90	10.90	41.80			
	Inferred	101.0	0.60	7.20	27.40			
	Total	131.0	0.90	10.10	39.00			
	Contained (kt)		1,179	13,231	51,090			
	Ore reserves (as at July 2	019):						
	Reserve category			Tonnes (Mt)	V ₂ O ₅ (%)			
	Proved			1.1	0.96			
	Probable			28.5	0.88			
	Total			29.6	0.88			
	Contained (kt)							

Stage of development	Feasibility study completed in August 2019.
	The project's first binding offtake agreement, covering 16% of forecast annual production, was signed in April 2020. Offtake discussions with a range of other parties are progressing.
	The project tenure is being converted to a mining lease, with discussions with all stakeholders progressing well.
	The project was self-referred to the WA Environment Protection Authority in November 2018 with preparation of the environmental review document underway and on track for lodgement later in 2020.
	Discussions are progressing with a number of groups with regard to project development funding, including advanced engagement with the Australian Government–backed Northern Australia Infrastructure Facility (NAIF).
Expected production	Expected annual production (post ramp-up average):
	• Ore mined and processed: 1.7 – 2.3 Mtpa
	• V ₂ O ₅ : 12,800 tpa ¹
	¹ – peak steady state production of 13,700 – 14,200 tpa years 3–12.
Infrastructure	Gabanintha is well placed to access infrastructure at the regional centre of Meekatharra, including an airport, accommodation for the construction workforce, hospital and other ancillary services. TMT is engaged with the NAIF in regard to support for funding of infrastructure plus potential for third-party development of a natural gas pipeline to service the operation.
Project development capital costs	Pre-production process plant and associated non-process infrastructure capital expenditure is estimated at A\$454m. Additional mining pre-production capital is estimated at A\$16m.
Project economics	The August 2019 feasibility study delivered a pre-tax NPV _{8%} of A\$1,320m (US\$924m) and a pre-tax IRR of 34.2% from an initial 16+-year mine life. Life of mine EBITDA is A\$4,063m on total revenue of A\$7,019m. Anticipated payback period is 3.2 years.
Project funding	The company is progressing discussions with a range of groups with regard to project financing, including NAIF and potential product offtake and EPC groups. The company recently announced a binding offtake agreement with CNMC (Ningxia) Orient Group Company Ltd.
	The company welcomes discussions with strategic investors with regard to investment in TMT and/or direct asset level investment/joint venture designed to support project development.
Other	Company website: tmtlimited.com.au
	Quarterly activities report: tmtlimited.com.au/sites/default/files/asx- announcements/6977569.pdf
	Project presentation: tmtlimited.com.au/sites/default/files/asx- announcements/6957540.pdf

CRITICAL MINERAL(S)	TITANIUM, VANADIUM NT						
PROJECT NAME	MOUNT PEAKE						
Location	Mine site is located app Northern Territory.	roximately 230) km north	of Alice Spri	ngs in the		
	TIVAN [®] Processing Faci	TIVAN® Processing Facility is located 10 km from the Darwin Port, NT.					
Company name	TNG Limited						
Company ownership	ASX-listed (TNG)						
	TNG wholly owns all Mor as well as the TIVAN® pr	unt Peake mini ocess and pat	ng, explora ents.	tion and and	cillary licences		
Project description	Mount Peake is an advanced world-scale vanadium-titanium-iro with existing infrastructure in place and mining licence, native t environmental approvals already granted for the mine developm deposit is close to surface and flat lying with a JORC-compliant of 160 million tonnes, making it one of the largest undeveloped titanium-iron projects globally.						
	TNG has also developed a processing operation to produce three high- value, high-purity products from this resource – vanadium pentoxide, titanium dioxide pigment and iron oxide – through the application of its 100%-owned TIVAN® process to the magnetite concentrate produced a the mine site, where ore will be mined in a conventional open-pit mine o						
	The Mount Peake Project which supports its deve	ct has major pr lopment.	roject statu	is with the N	IT Government		
Expected products	Titanium dioxide pigment (TiO ₂), vanadium pentoxide (V_2O_5) and iron oxide (Fe2O3).						
Mineral inventory	Mineral resources (as at	26 March 201	3):				
	Resource category	Tonnes (Mt)	V ₂ 0 ₅ (%)	TiO ₂ (%)	Fe (%)		
	Measured	118	0.29	5.50	24.00		
	Indicated	20	0.28	5.30	22.00		
	Inferred	22	0.22	4.40	19.00		
	Total	160	0.28	5.30	23.00		
	Contained (kt)		448	8,480	36,800		
	Ore reserves (as at 31 July 2015):						
	Reserve category	Tonnes (Mt)	V ₂ 0 ₅ (%)	TiO ₂ (%)	Fe (%)		
	Probable	41.1	0.42	7.99	28.00		
	Note: currently being updated by Snowden.						
Stage of development	After completing an updated feasibility study in 2017 and an optimised delivery strategy in 2019, TNG is currently undertaking a front-end engineering and design (FEED) study for the Mount Peake Project with the leading German- based engineering firm SMS, in support of a final investment decision for the project. The FEED study will provide confirmation of the final capital expenditure required for the beneficiation plant and TIVAN® processing facility. TNG is also progressing design for the project's non-process infrastructure to confirm complete capital expenditure requirements.						

Stage of development	In parallel with the FEED study, TNG is progressing final permissions and approvals for the Mount Peake Project, including negotiations with the NT Government on a site allocated to the company in the Middle Arm Industrial Precinct at Darwin for the TIVAN® Processing Facility, and finalisation of the environmental impact statement for the TIVAN® facility. The company has secured grant of the mining leases and environmental approvals for the mine site. The company is advancing the project financing structure for both the debt and equity components, having mandated Germany's state-owned KfW IPEX-Bank GmbH as its exclusive senior debt advisor and arranger, and is actively progressing and evaluating a number of different options for equity financing. TNG has entered into life-of-mine offtake agreements for up to 100% of the titanium dioxide and up to 60% of the vanadium pentoxide to be produced by the Mount Peake Project. The company has also executed binding term sheets for iron are products and the remaining vanadium pentoxide neglection.				
Expected production	Scheduled mined processed material:	69 Mt LOM / average 2 Mtpa			
	Magnetic concentrate:	23.3 Mt LOM / average 0.7 Mtpa			
	Titanium dioxide pigment:	3.5 Mt LOM / average 100,000 tpa			
	Vanadium pentoxide:	0.231 Mt LOM / average 6,000 tpa			
	Iron oxide:	17.6 Mt LOM / average 0.5 Mtpa			
Infrastructure	The project is planned to comprise an open-cut mining operation, a beneficiation plant, the TIVAN [®] Processing Facility, and supporting non-processing infrastructure additions and upgrades, including haul roads, logistics, utilities, camp facilities and airfield upgrades.				
Project development capital costs	Pre-production capital expenditure is mine site, concentrator and process pl	A\$824m including infrastructure, ant.			
Project economics	Interim Financial Model – Aug 2019				
	IRR pre-tax:	33%			
	NPV (at 8% discounted):	A\$2.8bn			
	Payback:	2.8 years			
	Pre-tax net annual average cash flow:	A\$359m			
	Life-of-mine net cash flow:	A\$12.2bn			
	OPEX per tonne processed:	A\$210			
	Mine life:	37 years			
Project funding	Funding of the capital expenditure for de at the completion of the FEED study, wil components, currently expected to be s • Debt funding mandate awarded to Ge	evelopment, which will be confirmed I require both debt and equity plit 65:35 (subject to confirmation). ermany's state-owned KfW IPEX-			
	 Different equity financing options currently being evaluated by TN and include existing shareholders and institutional investors, strainvestors, offtake partners and existing project development part 				
Other	tngltd.com.au				
	Twitter: @tng_limited				

CRITICAL MINERAL(S)	VANADIUM QLD						
PROJECT NAME	RICHMOND-JULIA CREEK VANADIUM PROJECT						
Location	Located in the Richmond–Julia Creek area, 500 km west of Townsville and 400 km east of Mount Isa, in northern Queensland. The project comprises four main prospects covering an area of 1,300 km ² .						
Company name	Horizon Minerals Limited (75%) / Richmond Vana Pty Ltd (25%)	dium Technolo	ogy				
Company ownership	75% ASX-listed (HRZ) .						
	25% Richmond Vanadium Technology Pty Ltd – a p	orivate unlisted	l company.				
	In September 2017, Horizon entered into a joint venture agreement wit Richmond Vanadium Technology (RVT) over the Richmond–Julia Creek Vanadium Project. Under the joint venture, RVT has earned a 25% inter in the project which can be increased to 75% by funding A\$5m expendit and completing a pre-feasibility study on the project within three years September 2021.						
Project description	The Richmond–Julia Creek Vanadium Project is one of the largest undeveloped vanadium resources in the world. The deposit commences from the surface and is hosted in soft marine sediments within oxidised limestone-rich clay. The shallow, soft nature of the deposit makes it amendable to an open-cut free-dig mining operation. Initial development work will focus on the upper coquina, a soft sedimentary layer comprised of shell fragments, of the Rothbury, Lilival and Manfred deposits, which are included in the Richmond–Julia Creek Vanadium Project. The project is expected to have low-strip, convention open-pit mining with a potential mine life of over 100 years at a product rate of 4.2 Mtpa ore mined and processed on site, to produce 790,000 vanadium concentrate as base case, or alternatively 12,700 tpa vanadiu						
	Test work has shown that over 90% of the contained metal lies in t -38µm size fraction. This fine fraction is amenable to low-cost rem scrubbing, trommelling, screening, cycloning and potentially flotat produce a high-grade vanadium concentrate of 1.82% V ₂ O ₂ , for smo						
Expected products	Vanadium concentrate (base case) containing 1.82	2% V ₂ 0 ₅					
Mineral inventory	Mineral resources (as at May 2020) at 0.30% $\rm V_{2}O_{5}$	cut-off:					
	Resource category at 0.30% V2O5 cut-off	Tonnes (Mt)	V ₂ O ₅ (%)				
	Indicated	430	0.50				
	Inferred	1,408	0.32				
	Total	1,838	0.36				
	Contained (kt)		6,650				
	The mineral resource includes the Rothbury, Liliva	le and Manfred	deposits.				
Stage of development	RVT completed a pre-feasibility study in May 2020.						

Expected production	• Ore mined and processed: 4.2 Mtpa				
	• Vanadium concentrate: 790,000 tpa				
	• Expected mine life of over 100 years.				
Infrastructure	The Richmond–Julia Creek Vanadium Project lies on the Flinders Highway and Great Northern Railway, providing direct access to the Townsville Port.				
	A high-voltage electricity transmission line connecting the North West Minerals Province to the national electricity market grid south of Townsville passes directly south of the project. Planned copper string upgrades to the grid have been announced by the Queensland Government.				
	The location of the project in Queensland's North West Minerals Province provides eligibility to apply for Northern Australia Infrastructure Facility concessional loans.				
Project development capital costs	Not currently publicly available.				
Project economics	Not currently publicly available.				
Project funding	The company welcomes discussion regarding financing of project construction or offtake agreements.				
Other	richmondvanadium.com.au				
	horizonminerals.com.au/richmond-vanadium-jv				

CRITICAL MINERAL(S)	VANADIUM, TITANIUM WA							
PROJECT NAME	AUSTRALIAN VANADIUM PROJECT							
Location	Located in the Murchison Province approximately 43 km south of Meekatharra and 740 km north-east of Perth in Western Australia.							
Company name	Australian Vanadium Ltd	Australian Vanadium Ltd						
Company ownership	ASX-listed (AVL)							
Project description	The Australian Vanadium Project is one of the highest-grade vanadium projects currently being developed in the world.							
	The project is based on an open-pit mine with onsite crushing, milli beneficiation, and a processing plant located east of Geraldton for conversion of high-quality vanadium pentoxide (V_2O_5).							
	The crushing, milling and beneficiation (CMB) flow sh standard processes and includes magnetic beneficia concentrate of nominally $1.4\% V_2O_5$. The project has ore grade to the CMB plant ($1.03\% V_2O_5$), thereby reamass yield; possibly the highest of all current operation.	eet is based on tion producing a high LOM van lising a high cor ons worldwide.	industry- a magnetic adium ncentrate					
	The Geraldton processing plant flow sheet is based leach and ammonium vanadate (AMV) extraction p purity V_2O_5 flake product.	d on an alkaline rocess, produc	roast ing a high-					
	The initial mine life used for the pre-feasibility stud a subsequent resource upgrade will allow for exter 20+ years.	dy (PFS) was 17 nsion of the mir	years, but ne life to					
Expected products	 The project will produce V₂O₅ flake (suitable for steel industry use) a as high-purity powder (suitable for chemical, master Al-Ti-V alloys ar vanadium redox flow battery electrolyte). Test work has upgraded the calcine iron by-product to an average of 66% Fe. Test work has been conducted to further separate titanium a concentrate product. CRC-P funding has been received for high-pu processing including work on titanium-specific recovery. The materia contains around 15% titanium oxide 							
Mineral inventory	Total mineral resource (as at March 2020):							
	Resource category	Tonnes (Mt)	V ₂ O ₅ (%)					
	Measured	10.1	1.14					
	Indicated	69.6	0.72					
	Inferred	128.5	0.73					
	Total	208.2	0.74					
	Contained (kt)		1,541					
	Ore reserves (as at December 2018):							
	Reserve category	Tonnes (Mt)	V ₂ O ₅ (%)					
	9.8	1.07						
	Probable	8.4	1.01					
	Total	18.2	1.04					
	Contained (kt)		190					

Mineral inventory	Within the total mineral resource, a total high-grade portion of the resource of 87.9 Mt at 1.06% V_2O_5 was also defined in March 2020.					
Stage of development	Pre-feasibility study completed in December 2018.					
	The company is currently well advanced in completing a definitive study to support final funding and construction.					
	The project was awarded major project status in September 2019 in recognition of its national strategic significance. In April 2020 the project was awarded lead agency status by the WA Government.					
	Pilot-scale test work on LOM average feed blend achieving high vanadium recoveries of 76% at a grade of 1.37% V_2O_5 in concentrate.					
	Mining licence application underway.					
	Environmental approval application being finalised.					
	MOU signed with third-largest vanadium producer in China.					
Expected production	Average annual production (post ramp-up) of:					
	• Ore mined: 1.64 Mtpa					
	• Process plant throughput: 1.45 Mtpa					
	• Concentrate: 900 ktpa					
	• V_2O_5 as mix of flake or powder: 10,200 tpa					
Infrastructure	The remote and greenfields location requires construction of all infrastructure. The major non-process infrastructure required includes: gas supply to processing plant (located near to Geraldton and existing infrastructure); electrical power at the mine site including renewable energy generation paired with vanadium redox flow batteries; water supply via a bore field or through a water access agreement currently being negotiated with Westgold Resources to access water from its pits; regional road access including potential local road access from the Sandstone Road to Great Northern Highway, particularly useful in the wet season; and the					
Project development capital costs	Initial indicative capital costs for the project, which were announced in the PFS, were US\$354m (±25%). This figure is currently being revised to provide a more accurate figure and a staged approach to construction is being considered.					
Project economics	Based on the PFS completed at the end of 2018, the project shows an internal rate of return (IRR) ranging from 12.4% to 47.5% and a pre-tax net present value (NPV) 8% ranging from US\$230m to US\$2,031m. One of the company's main goals is to reduce both the capital and operating costs. The project demonstrated its financial viability utilising conservative figures used in the PFS, therefore any improvement to the economics makes it more attractive to investors and offtake partners. A detailed cost model is available for review along with all available					
Project funding	The company is seeking both debt and equity, in addition to offtake and					
Other						
Other	australianvanadium.com.au					

CRITICAL MINERAL(S)	VANADIUM QLD						
PROJECT NAME	SAINT ELMO						
Location	Located 25 km east of Julia Creek in north-west Queensland.						
Company name	Multicom Resources Ltd						
Company ownership	Unlisted public company						
Project description	Multicom's Saint Elmo Project is being developed t the increasing supply gap in the vanadium market. global demand for lighter-weight and higher-stren an increasing global demand for renewable and rel vanadium a valuable metal.	o take advanta There is an inc gth steels as w iable energy, m	ige of reasing ell as aking				
	The project is situated in the globally renowned No Province, only 260 km from Mount Isa.	orth West Mine	rals				
	The Saint Elmo Project will be a shallow, low strip ra Ore will be processed on site via a roast, leach and process to produce a >98% purity vanadium pento	atio, open-cut i solvent extrac xide (V ₂ O ₅) proc	mine. tion duct.				
	This low-impact, low-carbon-footprint project buil exemplary record in the development and supply o responsibly sourced raw materials.	ds on Australia f ethically and	'S				
	The Saint Elmo Project has been granted major project statu Australian Government and is designated a 'prescribed proje 'project of regional significance' by the Queensland Governn is welcomed support, as the company finalises approvals for vanadium as a critical mineral to the global market.						
Expected products	>98% V ₂ O ₅ (vanadium pentoxide).						
	Currently investigating potential for a molybdenum by-product.						
Mineral inventory	Mineral resources at 0.2% V_2O_5 cut-off (as at July 2	2018):					
	Resource category	Tonnes (Mt)	V ₂ O ₅ (%)				
	Measured	15.5	0.26				
	Indicated	89.0	0.25				
	Inferred	200.0	0.25				
	Total	304.5	0.25				
	Contained (kt)		762				
	*Extensive drill program and updated geological model currently underway – due mid 2020.						
Stage of development	Multicom Resources has been rapidly developing the Saint Elmo Project over the past three years.						
	Following commencement in early 2017, the project's environmental impact statement was lodged for public advertising in October 2019. Responses and clarifications are being provided to the Queensland Department of Environment and Science for outstanding comments and queries. This work is due to be completed in mid-2020.						
	In support of the mining lease application, the company has resolved native title and cultural heritage assessment and approval, while having also advanced land compensation negotiations to final stage.						

Stage of development	A pre-feasibility study was completed in November 2019, detailing the economic and technical viability of the project. Multicom has since moved onto its feasibility study and expects to have this completed in 2020.
	With the continued support from both state and federal governments, the project's approvals are well advanced, with the mining lease expected in the second half of 2020.
	Subject to financing, production is expected to commence in 2022.
Expected production	Average annual production (initial stage) of:
	• Ore mined and processed: 2.5 Mtpa
	• V ₂ O ₅ (>98%): 4,000 tpa
	The company anticipates the scaling up of production capacity once in operations to 10 ktpa and then 20 ktpa, subject to market conditions.
Infrastructure	The project is ideally located adjacent to the Flinders Highway and Mount Isa rail line, which both connect Townsville to Mount Isa.
	Gas-fired, site-generated power will provide reliable onsite electricity, with the company also considering renewable energy sources.
	Site water will be obtained from onsite and offsite surface water. Multicom is well advanced in working with the Queensland Government to obtain the necessary water allocation from the Flinders River.
	The project workforce will be accommodated in the town of Julia Creek and integrate into the existing community. Both Cloncurry and Mount Isa, as major centres, are within a 2.5-hour drive and can support the company's commitment to local employment and supply.
Project development capital costs	A\$205m (including 18% contingency) as per the November 2019 pre-feasibility study.
Project economics	The November 2019 pre-feasibility study demonstrated that the project is robust at the initial production capacity of c.4000 tpa with the following economies:
	• Life-of-mine: 30 years
	• Life-of-mine revenue: A\$3,886m
	• Life-of-mine EBITDA: A\$1,813m
	• NPV _{8%} (post-tax): A\$250m
	• IRR (post-tax): 20.0%
Project funding	Multicom Resources is progressing discussions for project funding with current shareholders, potential investors, offtake partners, traditional debt providers and government-supported debt/grant programs, including NAIF. Completion of the feasibility study and advancement of offtake discussions in the second half of 2020 will support these discussions, with a view to reaching financial close in early 2021.
Other	Company website: mcres.com.au
	Government announcement: minister.industry.gov.au/ministers/ karenandrews/media-releases/big-boost-qld-critical-minerals-project
	Shaun McCarthy, CEO: shaun@mcres.com.au

Zirconium (Zr)

Advanced zirconium projects (total mineral resource tonnage, grade and contained mineral)

Critical mineral	Project name	Company	Project status	Primary mineral(s)	Tonnage (Mt)	Grade	U	nits	Contained (kt)	Page
Zirconium	Jacinth Ambrosia	lluka Resources Ltd	Operating	Zr, Ti	184.0	0.71	%	ZrO ₂	1,314	-
Zirconium	Cataby	lluka Resources Ltd	Operating	Ti, Zr	308.0	0.26	%	ZrO ₂	796	-
Zirconium	Cooljarloo	Tronox Holdings Plc	Operating	Ti, Z	416.0	0.13	%	ZrO ₂	548	-
Zirconium	South West	Iluka Resources Ltd	Operating	Ti, Zr	83.0	0.48	%	ZrO ₂	401	-
Zirconium	Boonanarring	Image Resources Ltd	Operating	Ti, Zr	30.3	0.82	%	ZrO ₂	248	-
Zirconium	Eneabba Stockpile	lluka Resources Ltd	Operating	Zr, REE, Ti	1.0	14.47	%	ZrO ₂	145	103
Zirconium	Keysbrook	Doral Pty Ltd	Operating	Ti, Zr	78.2	0.17	%	ZrO ₂	135	-
Zirconium	Ginkgo- Crayfish- Snapper	Tronox Holdings Plc	Operating	Ti, Zr (REE)	74.0	0.16	%	ZrO ₂	122	-
Zirconium	Wonnerup	Tronox Holdings Plc	Operating	Ti, Zr	21.0	0.37	%	ZrO ₂	77	-
Zirconium	North Stradbroke	Sibelco Australia Ltd	Operating	Ti, Zr				ZrO ₂	NA	-
Zirconium	Atlas- Campaspe	Tronox Holdings Plc	Construction	Ti, Zr	88.0	0.53	%	ZrO ₂	470	-
Zirconium	Dubbo	Alkane Resources Ltd	Pre-const	Zr, Nb, Hf, Ta, REE	75.2	1.89	%	ZrO ₂	1,421	107
Zirconium	Donald	Astron Ltd	FS	Zr, Ti, REE	2,427.0	0.61	%	ZrO ₂	14,830	128
Zirconium	Thunderbird	Sheffield Resources Ltd	FS	Zr, Ti	3,230.0	0.39	%	ZrO ₂	12,462	-
Zirconium	WIM150	Murray Zircon Pty Ltd	FS	Zr, Ti, REE	1,650.0	0.51	%	ZrO ₂	8,467	132
Zirconium	Fingerboards	Kalbar Resources Ltd	FS	Zr, Ti, REE	530.0	0.67		ZrO ₂	3,584	134
Zirconium	Coburn (Amy)	Strandline Resources Ltd	FS	Ti, Zr	1,606.0	0.18	%	ZrO ₂	2,840	136
Zirconium	Balranald	lluka Resources Ltd	FS	Ti, Zr	45.5	2.43	%	ZrO ₂	1,108	138
Zirconium	Cyclone	Diatreme Resources Ltd	FS	Zr, Ti	203.0	0.42	%	ZrO ₂	846	-
Zirconium	Dongara	Tronox Holdings Plc	FS	Ti ,Zr	68.0	0.37	%	ZrO ₂	248	-
Zirconium	Atlas	Image Resources Ltd	FS	Ti,Zr	18.1	0.37	%	ZrO ₂	68	-
Zirconium	Mindarie C	Murray Zircon Pty Ltd	Care and maint	Ti, Zr	19.3	0.35	%	ZrO ₂	67	
Zirconium	Mindarie A1	Murray Zircon Pty Ltd	Care and maint	Ti, Zr	8.8	0.27	%	ZrO ₂	23	
Zirconium	Avonbank	WIM Resource Pty Ltd	PFS	Zr, Ti	490.0	0.54	%	ZrO ₂	2,626	140
Zirconium	Сорі	Relentless Resources Ltd	PFS	Ti, Zr	75.4	0.31	%	ZrO2	236	-

All heavy mineral sands project summaries are included in the titanium section (other than Eneabba Stockpile in the rare-earth elements section).

Dubbo project included in the rare-earth elements section.

Titanium, zirconium and rare-earth element (REE) projects include both hard rock and heavy mineral sands (HMS) projects, which generally use different mineral forms for reporting of grades in mineral resource statements. To put grades and contained critical mineral within the total mineral resource on a comparable basis for titanium, zirconium and REE projects, it was necessary to convert into standard mineral forms using the conventions and conversion factors described in Table 3. It should be noted that HMS projects are generally large, low-cost bulk sand mining operations with lower cost structures and the ability to economically extract lower-grade resources than is generally the case with hard rock projects.

Critical Mineral	Mineral forms of for reporting g resource s	Conve project	Conventions used in prospectus for project ranking and conversion factors			
	HMS projects	Hard rock	Hard rock Convention Conversion		Conversion factor	
Titanium	Ilmenite	TiO ₂	TiO ₂	Ilmenite -> TiO ₂	60%	
	Rutile	TiO ₂	TiO ₂	Rutile -> TiO_2	95%	
	Anatase	TiO ₂	TiO ₂	Anatase -> TiO ₂	95%	
	Leucoxene	TiO ₂	TiO ₂	Leucoxene -> TiO ₂	80%	
Zirconium	Zircon	ZrO ₂	ZrO ₂	Zircon -> ZrO ₂	67%	
REE ¹	Monazite	TREO ²	TREO	Monazite -> TREO	60%	
	Xenotime	TREO ²	TREO	Xenotime -> TREO	62%	

Table 3: Titanium, zirconium and REE projects - mineral form grade conventions and conversion

1. Rare-earth elements

2. Total rare-earth oxides

REFERENCES

- 1. Geoscience Australia, June 2020.
- 2. Skirrow RG, Huston DL, Mernagh TP, Thorne JP, Dulfer H and Senior AB (2013). 'Critical commodities for a hightech world: Australia's potential to supply global demand', Geoscience Australia, Canberra. http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_76526/
- 3. Australia's Critical Minerals Strategy (2019), Australian Government, Department of Industry, Innovation and Science, Australian Trade and Investment Commission. https://www.industry.gov.au/sites/default/files/2019-03/australias-critical-minerals-strategy-2019.pdf
- 4. During recent times there has been much controversy about the actual number of elements included in the group of rare-earth elements. For example, the International Union of Pure and Applied Chemistry (IUPAC: http://old.iupac.org/ dhtml_home.html) has defined rare-earth elements as a group of 17 chemically similar metallic elements that comprise the 15 lanthanide elements (lanthanum to lutetium), scandium and yttrium. Although scandium also has similar physical and chemical properties to the lanthanides, its chemical properties do not resemble the lanthanide metals as closely as yttrium. For this reason, the Prospectus will treat scandium as a separate element to the other rare-earth elements.
- 5. United States Geological Survey, Mineral Commodity Summaries 2020. Figures for 2019 are estimates.
- Hoatson DM, Jaireth S and Miezitis Y (2011). 'The major rare-earth element deposits of Australia: geological setting, exploration, and resources', Geoscience Australia. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search?node=srv#/metadata/71820
- 7. Skirrow RG et al. (2013) (ibid.).
- 8. www.chemicool.com/elements
- 9. Hoatson DM et al. (2011) (ibid.).
- 10. Australia's Identified Mineral Resources (AIMR) 2019, Geoscience Australia, www.ga.gov.au/scientific-topics/ minerals/mineral-resources-and-advice/aimr
- 11. Australia Minerals is a collaboration of Australia's federal, state and Northern Territory government geoscience agencies working together to attract investment into the Australian minerals sector. See: http://www.australiaminerals.gov.au/

AUSTRALIA